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Continuous estimation of signal statistics is an important issue in many video

processing systems, such as motion detection in surveillance applications. In this paper

we demonstrate how results of classical expressions for variance estimation decrease in

accuracy when dealing with sequences containing high illumination variations. The

paper also proposes a new estimation method, and shows how, under such conditions,

the accuracy of the proposed method produces better results whilst maintaining

performance in scenarios with smaller changes, thus improving the motion detection

stage of a video surveillance system.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Background maintenance is a common block in video
surveillance systems. It enables the system to update the
background model, that is, some of the background
statistics [1]. Frequently, the statistics used are the mean,
which is an accurate representation of the background,
and the variance, which provides information about the
behavior of each zone of the image. For motion detection,
both parameters are used together to determine whether
a pixel corresponds to the background or foreground. For
instance, in [2], if a pixel pðx; yÞ has a value which is more
than twice its typical deviation from the mean, then that
pixel is considered as belonging to the foreground, that is:

Mðx; yÞ ¼
Background if mxy � 2sxyopðx; yÞomxy þ 2sxy

Foreground otherwise

(

(1)

According to this, the greater the variance of a given pixel,
the lower is the sensitivity, since the range of possible
ll rights reserved.

.

values for belonging to the foreground decreases. In [3],
the variance is further used, along with other parameters,
to classify each zone of the image according to their
behavior of each zone. In this case, an error in variance
computation would lead to a pixel misclassification.

If we consider a video sequence, such as the one shown
in Fig. 1(a), several statistics can be computed. Fig. 1(b)
shows the estimated mean. As we can see, this image
depicts the background of the scene, that is, an image of
the scene with all moving objects removed. The variance
of the sequence can also be computed, in this case shown
in Fig. 2(a) or (b). Note that since the variance is not itself
an image, it must be normalized in order to be visualized
properly in a figure. In this case, black ðpixel ¼ 0Þ cor-
responds to a variance equal to 0, and, linearly, white
ðpixel ¼ 255Þ corresponds to a variance equal to 1000. In
this image, we can see how pixels with high variance
values (white levels in the normalized image) belong to
high activity zones, for instance, the road, and low values
to low activity ones.

Although many more statistic can be computed, these
are the two basic ones proposed in most works. However,
since the input of a video surveillance system is a stream
of unlimited length, these statistics need to be computed
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Fig. 1. (a) One image of a sequence and (b) its estimated background.

Fig. 2. Normalized estimated variance of the video sequence of Fig. 1 using (a) expression (8) and (b) expression (3). In both figures, black pixels

correspond to variance values equal to 0, whereas white pixels to 1000. (c) (a) minus (b) where positive, 0 otherwise. (d) (b) minus (a) where positive, 0

otherwise.
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continuously, that is, their values must be updated
with each new frame. For that reason, results shown in
Figs. 1(b) and (2) are the statistical estimations for one
particular moment in the sequence. To this end, several
expressions have been proposed in the literature; for
estimation of the mean, one of the best known is the one
employed in [4–6]:

mt ¼ ð1� aÞmt�1 þ aIt ð0oao1Þ (2)

where subscript t refers to frame number, It is the image
itself, mt is the estimated mean and a is called the learning
rate. Since we are considering images, (2) has to be
computed independently for each pixel.
2. Variance estimation

Whilst (2) is one of the preferred expressions for
the estimation of the mean, several others have been
proposed in the literature for variance. For instance [7]
proposes the following estimator, s2

t :

s2
t ¼ ð1� aÞs

2
t�1 þ aðIt � mtÞ

2 (3)
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Fig. 3. Non-stationary signal with variance equal to 1.
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Other expressions have also been defined in the literature
[2,8,9], but their performance remains basically the
same. Nonetheless, variance can be estimated in many
other ways. For instance, in [10], an initial estimation of
variance is computed in a similar fashion to above, then its
histogram is computed, and finally the definitive value is
obtained from the first peak in that histogram. In [4,11],
variance is estimated in the same way as in (3), although
both propose modeling the background as a mixture of
Gaussians, and the expression is used to update only the
current Gaussian.

Although (3) has proven to be accurate enough when
working with real images, in the case of sequences with
high illumination variations, (3) shows a systematic error.
An analysis can be carried out of the expected value of the
last estimator in order to demonstrate this error. In the
case of a signal without illumination changes, where
the mean value of the signal does not vary and con-
sequently (2) can track its value accurately, that is Efmtg ¼

m where m is the actual mean of a given pixel, the expected
value for (3) is

Efs2
t g ¼ ð1� aÞEfs

2
t�1g þ aEfðIt � mÞ2g (4)

Taking into account that, by definition, EfðIt � mÞ2g ¼ s2:

Efs2
t g ¼ ð1� aÞEfs

2
t�1g þ as

2 ¼ s2 (5)

that is, (3) is a good estimation when the illumination
does not vary at all, or at least when variations occur
very slowly. However, in real scenarios, illumination
conditions can cause pixel values to vary rapidly so
that the estimated mean differs from its actual value in
Dt ¼ mt � m. For the sake of simplicity, and supposing that
Dt is constant, i.e., Dt ¼ D, the expected value for the
second term will be

EfðIt � mtÞ
2
g

¼ EfðIt � ðmþDÞÞ2g

¼ EfI2
t � 2Itmþ m2 þD2

� 2ItDþ 2mDg

¼ EfI2
t � 2Itmþ m2g þD2

� 2DEfItg þ 2mD (6)

The first term corresponds to signal variance, whereas the
last two terms cancel each other out; thus, the expected
value is

EfðIt � mtÞ
2
g ¼ s2 þD2 (7)

that is, the estimator has a systematic error with a value
of D2, and this error increases as the difference between
the estimated mean mt and the actual mean m increases.
With the aim of improving estimation accuracy in cases
of high illumination variability, in this paper we propose
the modification of (3) to the following expression:

s2
t ¼ ð1� aÞs

2
t�1 þ

a
2
ðIt � It�1Þ

2 (8)

Leaving aside for the moment the term 1=2, the validity of
the expression can be checked. The expected value for the
second term will be

EfðIt � It�1Þ
2
g ¼ EfI2

t g þ EfI2
t�1g � 2EfItIt�1g (9)

for the last term, when the samples are uncorrelated, as
may be the case for some pixels, especially those
belonging to noisy zones of the scene such as trees, road,
water, etc., we have

EfItIt�1g ¼ EfItgEfIt�1g ¼ m2 (10)

and thus,

EfðIt � It�1Þ
2
g ¼ 2ðm2 � m2Þ ¼ 2s2 (11)

which demonstrates that, for the noisy pixels in the
image, the variance computed with (8) yields a more
accurate estimation than that computed with (3). Corre-
lated pixels usually belong to a static background, where
variance is near zero and, although (10) does not hold in
such cases, the proposed expression gives a value near
zero which, for the video surveillance problem discussed
here, is absolutely valid. In any case, the goal of this stage
is not to provide an accurate estimation of variance in
all possible cases, but rather to give a useful estimation for
further stages, especially motion detection, as is the case
with the method proposed in this paper.
3. Experimental results

An example can help to better understand the
improvement achieved with the proposed expression.
Let us suppose a random signal which corresponds to a
pixel with variance equal to 1, and a mean value equal to 0
constant over time until one particular instant, where the
mean value changes suddenly to a value equal to 2, as can
be seen in Fig. 3. This signal constitutes an approximated
model of the illumination changes typical of certain video
surveillance scenarios.

Fig. 4 shows the evolution of signal variance computed
using expressions (3) and (8). Apart from the transient
period, where both signals need to reach their permanent
value, it can be seen that variance estimated with the
proposed expression remains close to a value of 1
throughout the whole sequence. This represents the
actual value of the variance, whereas the variance
estimated with (3) produces a very different value
when the illumination change occurs, and this deviation
is repeated in the following samples until that value
stabilizes.
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Fig. 4. Estimated variance for the signal in Fig. 3.

Fig. 5. Motion detection masks. (a) and (b) Two different images of the sequence. (c) and (d) Motion masks obtained from the variance computed with

expression (3). (e) and (f) Motion masks obtained from the variance computed with expression (8).
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Lastly, we can check the performance of both expres-
sions working in a real scenario. As we saw before,
Fig. 2(a) and (b) shows the estimated variance, at one
particular moment, in the video sequence shown in Fig. 1,
using expression (8) (Fig. 2(a)), and expression (3)
(Fig. 2(b)). These results were obtained from a few frames
taken after an illumination change, caused by passing
clouds. The zone of interest for these results is focused on
those parts of the image corresponding to the grass and
trees (bottom half of the figure, except the road). Although
variance in these zones is much lower than that of the
road, and remains so for both expressions throughout
the beginning of the sequence, we can see that, after the
illumination change, variance for these zones rises when
computed using expression (3), reaching a value almost
equal to the variance of the road, which is, obviously,
incorrect. This difference can be better appreciated in
Fig. 2(c) and (d). Fig. 2(c) shows the value of the difference
between figures (a) and (b), magnified 5 times when this
value is positive, and black for the pixels where the
difference is negative, that is

dðx; yÞ ¼
5ðs̄2

xyð3Þ � s̄2
xyð8ÞÞ if s̄2

xyð3Þ � s̄2
xyð8Þ40

0 otherwise

(
(12)

where s̄2
ð3Þ refers to the variance computed with (3) and so

on. Fig. 2(d) represents exactly the opposite. As we can
see, for the zones of interest, the variance computed with
(3) is always greater than that computed with (8), as has
been demonstrated above.

The consequence of this drift can be analyzed from the
point of view of the motion detection block. As we saw
before, motion detection systems using an expression
similar to (1) undergo some loss of sensitivity when
computed variance is greater than real variance. This
can be appreciated in the experiment shown in Fig. 5. In
this figure, (a) and (b) correspond with two parti-
cular moments of an inner sequence. This sequence was
recorded as follow. At the beginning of the sequence, the
scenario had low illumination. After some time, the room
lights were switched on, to produce a swift illumination
change, and some seconds afterwards, an object crossed
the scene. This particular instant is shown in Fig. 5(a).
Subsequently, the room lights were switched off, to
produce a new illumination change, and again, an object
crossed the scene few seconds afterwards, as it is
represented in Fig. 5(b). If we extract the motion detection
in the scene using (1) and the variances computed with
both expressions, we get the mask shown in Fig. 5(c) and
(d) for expression (3), and (e) and (f) for (8). As we see
before, since the variance computed with (3) is always
greater than that computed with (8), there is a loss of
sensitivity in the first case, as can be seen in (c), where the
size of the mask corresponding to the detected object is
much smaller than the one in (e), or in (d), where the
object is not detected at all.

We have to remark that the improvement achieved in
this paper is specially important for those zones of the
image where the variance is not so high. When variance is
so high, normally due to non-static background as it is the
case of a road with vehicles in motion, that there is a
complete loss of sensitivity in that part of the scene, other
motion detection strategies must be employed, and these
are not normally affected by an error in the variance
computation.
4. Conclusions

A new method for the continuous estimation of video
sequence variance has been proposed in this paper. It
yields better results than standard methods when analyz-
ing noisy pixels in sequences with high illumination
variability, which is frequently the case in real, uncon-
trolled scenarios, and yields similar results in sequences
without illumination changes. An experiment has also
been carried out in order to demonstrate these results in
practical applications. The conclusions obtained in this
paper could help to improve the performance of video
surveillance systems working in uncontrolled environ-
ments, such as outdoor scenarios.
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