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Background and objective: T-wave alternans (TWA) is a fluctuation of the ST-T complex occurring on an
every-other-beat basis of the surface electrocardiogram (ECG). It has been shown to be an informative
risk stratifier for sudden cardiac death, though the lack of gold standard to benchmark detection meth-
ods has promoted the use of synthetic signals. This work proposes a novel signal model to study the
performance of a TWA detection. Additionally, the methodological validation of a denoising technique
based on empirical mode decomposition (EMD), which is used here along with the spectral method, is
also tackled.

Methods: The proposed test bed system is based on the following guidelines: (1) use of open source
databases to enable experimental replication; (2) use of real ECG signals and physiological noise; (3) in-
clusion of randomized TWA episodes. Both sensitivity (Se) and specificity (Sp) are separately analyzed.
Also a nonparametric hypothesis test, based on Bootstrap resampling, is used to determine whether the
presence of the EMD block actually improves the performance.

Results: The results show an outstanding specificity when the EMD block is used, even in very noisy con-
ditions (0.96 compared to 0.72 for SNR = 8 dB), being always superior than that of the conventional SM
alone. Regarding the sensitivity, using the EMD method also outperforms in noisy conditions (0.57 com-
pared to 0.46 for SNR=8 dB), while it decreases in noiseless conditions.

Conclusions: The proposed test setting designed to analyze the performance guarantees that the actual
physiological variability of the cardiac system is reproduced. The use of the EMD-based block in noisy
environment enables the identification of most patients with fatal arrhythmias.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

(SCD) [1-3]. From a theoretical point of view, the problem state-
ment for its characterization is easy and well defined, as it ba-

The phenomenon of T-wave alternans (TWA), which is found
on the surface electrocardiogram (ECG) as a periodic pattern given
on an every-other-beat basis, is referred to the subtle variations
of amplitude, waveform, and duration of the ST-T complex. Also
named repolarization alternans, it has been found to be a clini-
cal method to identify patients at risk for malignant arrhythmias
and also as a marker for stratifying risk of sudden cardiac death
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sically consists of finding a periodic pattern. Although plenty of
computerized methods have been proposed so far [4-10], hardly
any of them can be utilized because no gold standard has still been
developed for methodological validation of alternans techniques.
The reason is that these fluctuations mostly take on values of some
few microvolts, which are invisible to human eye, thereby prevent-
ing the design of annotated databases.

This lack of gold standard has resulted in testing methods
which rely on synthetic signals, usually designed as the addition of
ECG, alternant wave, and noise [4-13], enabling proper TWA iden-
tification due to the actual knowledge of alternans features (wave-
form, alternant voltage, and location, among others). Among the
different approaches, those which utilize both simulated ECG and
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noise are less prescribed because they provide unrealistic signals,
unable to replicate the nonstationary conditions of a clinical envi-
ronment. Further, the composition of signals with a TWA pattern
in the full ECG duration constrains the study to a detection proba-
bility analysis.

In stratifying SCD risk, patients classified into a high-risk group
are eligible to therapy. The treatment usually consists of im-
plantable cardioverter defibrillator (ICD), a small device embodied
in the chest under skin, which uses electrical pulses to control life-
threatening arrhythmias. Therefore, the desirable feature of a strat-
ifying method like alternans would be the identification of most
patients that will experience ventricular tachycardia or ventricular
fibrillation, and the exclusion of those who will not [14]. So re-
garding the performance of a method, the analysis of the detection
probability (sensitivity) is not only relevant, but also the evaluation
of false alarm (specificity), which is a subject of major concern be-
cause it causes misdiagnosis in patients with lower risk. So, in or-
der to characterize the specificity of a method, a study of episodes
detection should be conducted. For this purpose, rather than creat-
ing ECG with sustained TWA, i.e., with alternans in the full length
ECG, we propose the inclusion of TWA sections of limited duration
so that the detection study of random TWA bursts, both in length
and location, will enable the specificity assessment.

In [15], a technique based on the empirical mode decomposi-
tion (EMD) [16,17] was proposed to prevent the negative effects of
noise during TWA testing. Therefore, the method was designed to
provide with a noise free estimate of the ST-T complex to be used
as a preprocessing block of any TWA detection technique. It was
examined along with the spectral method (SM) [18,19], though the
test setting was designed with sustained TWA, achieving only the
study of the sensitivity.

The contribution of the present work is twofold. First, to de-
velop a method to study the performance of a TWA detection sys-
tem in its wide extension, i.e., in terms of sensitivity and speci-
ficity. For this goal, we propose a signal model to compile a test
setting which captures the actual dynamic of the cardiac sys-
tem based on the following guidelines: (1) use of open source
databases to enable experimental replication; (2) use of real ECG
and physiological noise; (3) inclusion of randomized TWA episodes.
Second, to accomplish the study of the specificity for the EMD-
based method proposed in [15]. In this case, the SM is chosen as
TWA detector because it is one of the most widely accepted algo-
rithms. Its validity has been proven in a number of clinical stud-
ies [20] and it is currently implemented in commercial equipments
for its use in the clinical routine.

The performance validation is carried here out from two stand-
points. On the one hand, we use receiver operating characteristics
(ROC curves) to survey the detection capability of the proposed
scheme. Both sensitivity and specificity are also separately ana-
lyzed. At the same time, the method for validating signal process-
ing blocks proposed in [21] is applied in this work. The method
uses a set of statistics and nonparametric hypothesis test, based
on Bootstrap resampling [22], to determine whether the presence
of the preprocessing block actually improves the performance.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the methods used in this work to
design the detecting TWA scheme, namely, EMD, SM, complexity
descriptors, and the procedure for estimating the ST-T complex.
Next, the overall block diagram of the detector is described in
Section 3. In Section 4, the proposed signal model is developed
and Section 5 presents the metrics and the statistical methods
to test our system. The results are shown in Section 6 and some
limitations of the work are provided in Section 7. Finally, the
conclusions are derived in Section 8.

2. Brief review of signal processing techniques
2.1. Empirical mode decomposition

The EMD [16] is a signal processing technique which decom-
poses a signal into a set of oscillatory functions denominated in-
trinsic mode functions (IMF). Any IMF is obtained through a signal
dependent method referred to as “sifting process”, whose purpose
is to elicit a function which matches with the definition of IMF:
Function with an equal number of extrema and zero crossings (or
at most differed by one) with its envelopes, as defined by all the
local maxima and minima, and being symmetric with respect to
zero. Thus, the original signal x[n] can be represented as the sum
of IMFs

L
x[n] =Y cln]+qin]. (1)
i=1

The right hand side of the equation above consists of L IMFs and a
residue signal, g;[n], which may be a constant, a monotonic slope,
or a function with only one extremum. An IMF represents a simple
oscillatory mode as a counterpart to the simple harmonic function
used in Fourier analysis. We refer to ¢;[n] as the ith-order IMF, and
by this convention, lower order IMFs capture fast oscillation modes
while higher order IMFs typically represent slow oscillation modes.
From a time-scale analysis viewpoint, lower order IMFs and higher
order IMFs correspond to the fine and coarse scales, respectively.

2.2. Review of the spectral method

The SM [19] looks for an every-other-beat periodicity corre-
sponding to the TWA pattern by processing the power spectral
density in beat series obtained from the surface ECG. After de-
lineating and separating the ventricular repolarization portion, the
method works over a set of M consecutive ST-T complexes. We may
thus denote the m-th ST-T complex as an N dimensional vector

Xm=[Xm(o),xm(l)a-~-’Xm(N_1)]T- (2)

Preprocessing the ECG for signal conditioning, such as linear filter-
ing, baseline wander elimination, QRS detection and delineation,
beat alignment and rejection, among others, is usually considered
so as to ameliorate the TWA interpretation [4]. The resulting repo-
larization segments are then allocated into the M x N matrix

T
M= [x5,X],....Xy 1] =[S0 81,....5n1]. (3)

From a column-wise standpoint, the M x 1 vector s, =
[$n(0),sn(1), ..., sp(M —1)]" contains the samples of M consecu-
tive heartbeats collected at the same time latency n. This sequence
is the so called beat series, and its power spectrum density func-
tion is used to find the TWA periodic pattern of 2 at the compo-
nent of 0.5 cycles/beat (beatquency domain)

1 M-1 ) 2
B(f) = 57| D sn(mye 27 (4)
m=0

forn=0,1,...,N— 1. The contribution of the whole ST-T segment
is given by the aggregate spectrum

N-1

P = 5 P, (5)
n=0

The K-score, also known as TWA ratio, determines the magnitude
of the power spectrum at the alternans frequency over the noise

_ P(OAS) — Menoise

Onoise

K (6)
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where P(0.5) is the value of the aggregate spectrum (in Eq. (5)) at
0.5 cycles/beat, and f,ie and o ;5. are the mean and the stan-
dard deviation of noise, which is estimated in an adjacent refer-
ence band close to the alternans frequency, typically around 0.4
cycles/beat. A K-score is taken as statistically significant when the
alternans component exceeds three times the level of noise, i.e., K
> 3.

2.3. Complexity descriptors

The spectral purity index [15,23] (SPI) is a very well suited pa-
rameter to measure complexity in oscillatory signals such as IMFs.
In this work, we use the SPI to assess complexity in the EMD do-
main. The SPI is determined as

2
SpI— "2 (7)
mopmgy
where
T . .
m; = f 'Sy (el*)dw (8)
-

being m; the ith-order spectral moment of the power spectrum
Sx(e/®) of a given signal x[n]. The SPI is used to analyze whether a
signal may be described by a single frequency. It reports values in
the range [0, 1], where unity is attained for a pure sinusoid, which
corresponds to the simplest mode when dealing with oscillatory
signals. Conversely, lower SPI values are linked to more complex
components. In biological systems, normal biomedical systems are
considered very complex [24], so the SPI is used in this work to
assess complexity in the EMD domain and separate normal com-
ponents, usually more complex and less regular, from undesirable
ones, which may be identified by a high SPI value. For further de-
tails on spectral moment determination, which leads to SPI com-
putation, see [15,23].

2.4. ST-T complex estimation

The aim of the EMD-based method is to separate valid compo-
nents of the repolarization segment from noise. It is known that
the morphology of this section of the ECG is smooth, while noise
is a component characterized by fast variations. We then adopt the
following model for any ST-T complex, xm[n], 0 <n<N-—1:

Xm[n] = sm[n]+vm[n], 0<m<M-1 (9)

where sp[n] and vp[n] are signal and noise, respectively. As EMD
decomposes a signal as a set of IMFs ordered from quicker to
slower oscillations, we assume that higher order IMFs, i.e., the
slower components, are signal. Thus, using EMD, we may express
the repolarization segments as follows:

P-1 L
Xm[n] = Zcm,i[n]+zcm,i[n]+Qm,L[n] (10)
i=1 i=P
Dm[n] Smln]

being $z[n] and ¥[n] the estimates of signal and noise, respec-
tively. P is the IMF order, which has to be determined so as to
separate noise and signal. Let us remind that an IMF is considered
noise when it shows a regular oscillating pattern, which may be
assessed using the SPI parameter. The rules to get proper separa-
tion of signal from noise components are as follows:

1. Usually, lower order IMFs capture high frequency artifactual
components. In our case, the first two IMFs ¢, 1[n] and cp, 2[n]
are very fast oscillating modes, so they are rejected as signal
assuming that most of the noise is captured by them.

2. The residue q,, ([n] is considered as part of the signal because
it is a smooth and low varying component. Therefore, it is cho-
sen as part of the signal.
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Fig. 1. Example of ST-T estimation for distinct signals from the MIT-BIH Arrhyth-
mia Database. The original ST-T complex (dotted line) is corrupted by noise (dashed
line), from which the ST-T estimate is determined (continuous line). (a) Record 103
and (b) Record 117.
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Fig. 2. Block diagram for the signal processing stages on the TWA detection system.

3. The residue itself does not fully define the ST-T complex, so ad-
ditional IMFs (those that exhibit complex behavior) must be ap-
pended. Thus, starting from the L-th IMF toward lower order
IMFs, the value of P is assigned to the first IMF considered to
be noise, i.e., the one whose SPI is greater than a threshold «¢.

In summary, the identification of IMFs is achieved by study-
ing its complexity and taking IMFs components from higher
to lower order until a regular and simple IMF is identi-
fied, being this one considered as noise. The process ends
when this condition is reached, the signal being comprised
of the P-th IMF up to the L-th one plus the residue:
{emplnl, cmpralnl, ..., cmroalnl, cmrlnl, gmilnl}, 2 < P < L In this
work, ¢ is set to be 0.7. Fig. 1 shows two examples of ST-T com-
plex estimation taken from distinct signals of the MIT-BIH Arrhyth-
mia Database [25]. Both panels depict the ventricular repolariza-
tion section of one heartbeat extracted from an ECG signal con-
taminated by physiological noise.

3. TWA detection framework

Fig. 2 depicts a diagram of the complete TWA detection system
that operates over a sliding window length (M) of 128 beats with
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Table 1
Dataset of control ECGs.
Record Lead Var (uV)
117 2 85
121 1 145
2 65
122 2 75
123 1 55
2 35

112 beats overlapping (D). Accordingly, p[n] denotes an ECG signal
window to be analyzed.

First, R-peak detection is accomplished by using the reference
annotations associated to the database. A basic signal processing is
done to adjust the fiducial points to the actual R-peaks. The output
of this block (r[n]) is a vector containing the temporal positions of
the R-peaks.

In the next block, baseline wander (BW) cancellation is first
performed by third-order spline interpolation. Following, the ST-
T complexes are segmented by taking a variable distance from
the fiducial point, as proposed in [26]. Finally ST-T complexes are
aligned as proposed in [27], a template is obtained as the median
of 128 consecutive ST-T complexes and is used to align each ST-T
complex by maximizing the cross correlation. The output of this
block is an M x N matrix M, where M is the number of beats and
N is the number of samples of each ST-T complex.

In the following block, first the dynamic range of the alternant
wave ¢ is increased by subtracting the background ECG, which
is performed by subtracting consecutive rows in matrix M [28].
Next, a low pass filter is used to reject noise out of the TWA band
(0.3-15 Hz) [4]. Therefore, the cutoff frequency is set to 15 Hz.

Next, EMD-based ST-T estimation (see Section 2.4) is performed
starting from matrix Ms. To end, TWA detection is performed by
means of the SM (see Section 2.2).

4. Signal model

Benchmarking TWA methods cannot be easily accomplished
due to the lack of annotated databases. Alternatively, the use of
synthetic ECGs has been generally accepted [4-12] because they al-
low the TWA parameters to be known by artificially introducing al-
ternans. In order to achieve a realistic setting to perform the eval-
uation of the proposed method, we propose to deal only with real
signals. Additionally, for the sake of reproducibility, the actual am-
bulatory ECGs should only be taken from open source databases.
In our case, we use signals from Physionet [25]. Thus, the strategy
employed here consists of inserting TWA and noise into control
ECGs.

The SM is currently the most accepted method to analyze alter-
nans. Among the reasons for that, it is one of the early techniques
developed for this purpose [29], but foremost, among the many
clinical studies carried out within the scope of TWA, the vast ma-
jority have relied on the SM as the means to find alternans [20]. As
this work seeks to determine whether an EMD-based method for
estimating the ST-T complex is feasible when used along with the
SM to detect TWA, we use the SM as a trusted method to design a
dataset of ECGs free from TWA.

4.1. Simulated TWA in real ECGs

Control ECGs are collected from the MIT-BIH Arrhythmia
Database (fs =360 Hz) according to the following criteria: (1) a
signal is regarded as candidate only if more than 99% of its heart-
beats are annotated as “normal”; (2) from candidates, only those
without TWA are considered. The first two columns of Table 1

shows the ECG recordings that, according to our methods, have
been defined to be control. The dataset consists of a total of 6 ECG
signals taken from 4 records. To describe the signal model, we refer
any of these control ECGs with the variable p¢[n], 0 <n<L,-1,
where L, takes on the value of the full ECG length, say 650,000
samples (about 30 min).

Physiological noise from the MIT-BIH Noise Stress Test
Database [25] is also used to obtain ECGs with different signal-to-
noise ratio (SNR). The simulations are performed combining mus-
cular activity artifact, which is predominant in record ‘ma’, and
electrode motion artifact in record ‘em’. Noise is obtained as fol-
lows: (1) after lowpass filtering (FIR with cutoff frequency set to
4.75 Hz) to obtain zero mean realizations (by baseline drift cancel-
lation), the 2 noise series contained in each record are first normal-
ized with respect to its variance and subsequently concatenated;
(2) the resulting ‘ma’ and ‘em’ noise records with unit variance are
then combined into one single physiological noise record denoted
asv[n], 0 <n=<L,—1(Ly =2 x Ly samples). From v[n], a noise re-
alization segment vg[n] is randomly extracted:

vifn] = {U[«n— 1£6s)- L)y, ).

0, remaining

O<n<l,-1

(11)

where & is the uniform random variable U(0, 1), | - | stands for
rounding to the smallest integer, and ((A))s denotes A modulo B.
This operation takes on the first L, samples of the noise realization
v[n] after random rotation. A noisy ECG may then be obtained as:

pu[n] = pc[n]+ B - vs[n] (12)
where 8 is a scaling parameter employed to obtain ECGs at differ-
ent SNRs.

The alternant waves used in this study were estimated from
an ECG with clear TWA recorded during a percutaneous coronary
intervention, from the dataset used in [30]. These 15 waves are
smoothed and resampled to fit the control ECGs with fs = 360 Hz.
To obtain ECGs with TWA, an alternant waveform is added to the
ST-T section of every-other-beat of the signal. Its amplitude is es-
tablished by a function g, where k refers to the k-th heartbeat

o, k even
8k = {o, k odd. (13)

Thus, let g[n], 0 <n <L, —1, be an alternant wave, where L, «
Lp, the resulting ECG for testing is

Ny
pln] = poln]+ > Y[kl - g - eln—n —my (14)
k=1
where Nj, stands for the number of R peaks of p[n]. Parameter n;,
denotes the ST-T onset of the k-th beat and time delay n; intro-
duces a jitter effect, which is characterized as a zero mean Gaus-
sian random variable with a standard deviation corresponding to
20 ms. The function [k] is defined in the beat series domain as
a composite window function constructed by concatenating simple
window functions w;[k], as follows,

Q
w[k]:ij[k—kj] (15)
j=1
where Q stands for the number of concatenated windows whose
length are N;. The purpose of this function is to obtain Q alternans
episodes in p[n].

4.2. Experimental database
In order to perform the evaluation experiments, for each SNR,

we generated a database of 100 records. Following we describe the
procedure to obtain each of these records:
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1. The control ECG (pc[n] taken from Table 1) is randomly chosen
according to a uniform distribution.

2. The physiological noise segment (vs[n] of Eq. (11)) is extracted
beginning at a random position in the complete noise record
and added to pc[n] according to Eq. (12).

3. The alternant wave (g[n]) is also randomly selected and added
to pc[n] according to Eq. (14).

4, The insertion point of ¢[n] in the ST-T segment varies according
to a normal distribution with o = 20 ms.

5. The alternant episodes are included as bursts and the number
of bursts in a signal, Q in Eq. (15), is randomly selected between
1 and 4.

6. The length of each burst (N;) is also randomly set between 64
and 128 beats.

7. The function w;[k] (Eq. (15)) is a Tukey window, which is used
to simulate a progressively increasing alternant amplitude (g)
at the beginning of the burst, as well as a decreasing g, at the
end of the burst. The ratio between the taper section with re-
spect to the total length window has been chosen to be 0.4.

8. The insertion point of each burst in the signal, k; in Eq. (15), is
also randomly selected.

9. The amplitude of the alternant waves for each control ECG
(third column of Table 1) is set to be the lower voltage which
yields a detection probability of 1 with sustained TWA using
the SM, since it is the reference method in this study. Here the
detection probability is determined as the ratio between cor-
rect detections (number of K-scores greater of 3) and the total
number of computed K-scores.

With this elaborated procedure we obtain a database with a
very high variability to evaluate the performance of the method.

5. Performance assessment
5.1. Objective metrics

Regarding the alternant wave voltage (Table 1), when inserted
as in Eq. (13), it is defined as:

Vae = max{|e[n]|}, n=0,..., L, — 1, (16)
The quality of p[n] (14) is assessed by means of the SNR
2 paln]
SNR=10-log ——— (17)
3 (Bvin))’

where pq[n] = pc[n] + ZZL ¥lk]- g -eln—n, —n] is a clean ECG
containing TWA.

To evaluate the performance, we use the sensitivity, which as-
sesses the probability of a TWA event being detected,

TP
" TP+FN
where TP and FN stand for true positive and false negative, re-
spectively. The analysis of false alarm is addressed by means of
the specificity, which determined the probability of a non-existent
TWA event being detected,
TN
" TN+FP
where TN and FP stand for true negative and false positive (wrong
detections), respectively.

Fig. 3 shows the K-score resulting from a TWA analysis per-
formed over a signal p[n]. The two curves of the upper panel
(Fig. 3a) correspond to the SM with and without the EMD-based
ST-T complex estimator, given as a function of the signal window
over which the SM operates. There is one single K-score per seg-
ment. The lower panel (Fig. 3b) displays the same result but now

Se (18)

Sp (19)

k-score

Signal window

(a)

k-score

P

200 400 600 800 1000 1200
Heartbeat

(b)

Fig. 3. TWA analysis performed over the first lead of recording 123 at SNR=12 dB
with and without the EMD-based ST-T complex estimator. (a) K-score as a function
of the signal window and (b) K-score as a function of the heartbeats.

in the beat domain, so here we can appreciate the window func-
tion [k] of Eq. (14) (thick continuous line) that is used to in-
sert alternans, which in this case contains a single TWA episode.
Even though the Tukey window around the 950-th heartbeat de-
limits the area where the alternant wave is included, the interval
to which a TWA can be found is wider (thick dashed line) due to
the effect of the sliding window.

As the experiment in this work is concerned with the detec-
tion of TWA episodes, we will consider that an alternans episode
has been recognized if at least 2 consecutive K-scores have been
found to be significant, namely, K > 3. The reason is that one
positive K-score means that a TWA is found as a result of the
analysis of a signal window of M = 128 heartbeats. The next pos-
itive K-score means that the next signal segment of 128 heart-
beats, where D = 112 beats are shared with the previous segment
while 16 news are incorporated, still elicit positive TWA. In the
example of Fig. 3a (upper panel), there are three sections where
one of them, labeled with the thick horizontal line, highlights the
TWA burst. So, according to the criterion defined earlier, with the
SM alone (continuous curve with dots), the resulting statistics are:
TP=0, FN=1, TN=1, FP =1. When including the EMD-based
block to perform detection (continuous curve with circles), we ob-
tain: TP=1, FN=0, TN=2, FP=0.

5.2. Bootstrap resampling

In this section, a Bootstrap resampling scheme, already pre-
sented in [21], is used in the evaluation of the performance dif-
ferences between the EMD-based method and the SM.

We can study sampling variability by sampling by an artificial
population, for example this artificial population can be the dataset
from which we seek to draw inferences. Since the dataset is itself
a sample of the whole population, we are taking a sample from
the sample, i.e. resampling. This does not provide more informa-
tion from the population, but it does provide us with a way of un-
derstanding the consequences of sampling variability for drawing
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inferences about the population based on our data. The resampling
method can be used to compute the confidence interval (CI) of
many different types of statistics and to perform hypothesis test-
ing [31].

In the present problem we need to decide whether the per-
formance differences between EMD-based method and the SM are
statistically significant in terms of a given performance statistic.

Our statistical hypothesis test will contrast the null hypothesis
(Hp) that both methods have the same performance, against the al-
ternative hypothesis (H;) that they have different performance. Let
usy and ugyp denote the performance statistic obtained for each
method. Then, the hypothesis test can be stated as

Hyp: Au=0
Hy:Au#0 (20)

where Au = ugyp — Usy-

In order to approximate the probability density function (pdf) of
Usy, Upmp, and subsequently of Au, we use the well-known plug-in
principle. In brief, let Z={z;,j=1,..., L} be a set of L measures,
and let u be a statistical magnitude estimated by using an operator
O on the observed set, i.e., u = 0(Z). Since actual f;(Z) is unknown
and only a finite number of samples are available, and operator O
can be complex, then f,(u) will be often impractical to compute.
Alternatively, we can approximate f7(Z) for its plug-in empirical
distribution. We build sets Z*(b) (so-called resamples from Z), by
sampling with replacement up to L elements of Z. Now, a replica-
tion of statistic u is obtained as u*(b) = O(Z*(b)), and it represents
an estimate of this statistic. By repeating the resampling procedure
forb=1,..., B, an estimated pdf is given by

B
futw) = 5 3280w ). 1)
b=1

An estimation of the CI for Au, can be readily obtained from or-
dered statistics in Au*(b) resamples [22]. The differences between
the two methods are statistically relevant in terms of statistic u
when the 95% IC of Au does not overlap the zero value.

In the present problem of TWA detection, Z stands for TP, FP, TN
and FN measures, and u stands for specificity (Sp) and sensibility
(Se).

We start from two matrices of size 100 x 4, each row contains
the TP, FP, TN, FN values of each signal p[n] (see (14)), one for each
TWA detection method (SM and EMD). In each resampling itera-
tion these matrices are resampled with replacement, paired and
row-wise, this is, all the measures from one single signal remain
together. The Sp and Se values are computed in each iteration. At
the end of B iterations an estimation of the pdfs for the Sp and
Se are obtained for the SM (Spsy, Sesy) and for the EMD-based
method (Spgmp, Sesy), and the estimations of the pdfs for ASp and
ASe are obtained as

ASp = Spemp — Spsm
ASe = SeEMD — SESM. (22)

In our experiments the number of resamplings is set to B = 1000.

Fig. 4 shows an example of the estimated pdfs for ASe and ASp
represented as histograms, the 95% CI is represented with bars. If
the CI does not contain the zero the differences between the SM
and the EMD-based method are statistically significant. The top
panel shows that differences in Se are not significant, but Sp (bot-
tom panel) is significantly higher for the EMD method.

6. Results

As the proposed method has been originally conceived to coun-
teract the effect of noise, the system is analyzed in two environ-
ments: at an SNR of 8 dB, which represents severe noisy condi-
tions, and at 28 dB. ROC curves, displayed in both the upper graphs
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Fig. 4. Estimated pdfs for ASe (top) and ASp (bottom), the 95% CI is represented
with bars, SNR = 12 dB.

of Fig. 5, are obtained by computing Se and Sp at different signif-
icance level, i.e., using different threshold values to elicit a signif-
icant K-score. In noisy milieu (Fig. 5a), the area under the curve
(AUC) is greater when the EMD block is used (0.82 against 0.63),
being approximately the same as that of the SM when the amount
of noise is irrelevant (top (Fig. 5b). This behavior indicates that the
detectability improves in noisy environments.

For a closer understanding, we may separately examine Se and
Sp, depicted in lower graphs of Fig. 5. At this point, the attention
is drawn to a threshold value equal to 3 because this is the sig-
nificance level taken by the K-score in clinical practice. We may
see that the specificity is outstanding when the EMD block is used,
even in the noisy case (Spgyp = 0.96 against Sp = 0.72), being al-
ways superior than that of the regular SM method. Regarding the
sensitivity, using the EMD method also outperforms in the noisy
case, while it decreases in noiseless conditions.

The  performance evaluation scheme presented in
Section 5.2 confirms the statistical significance of the pre-
sented results. Fig. 6 shows the estimated pdfs for ASe and ASp
at SNR = 8 dB (Fig. 6a) and SNR = 28 dB (Fig. 6b). The Sp is
significantly better when the EMD block is used at both SNR
values. The Se is also significantly better using the EMD method
in noisy conditions, whereas it is significantly worse in low noise
conditions.

7. Discussion

TWA has been found to be a predictor of SCD, so it is used
in many studies as a potential method for stratifying risk. Ther-
apy against SCD is traumatic because it requires to insert an ICD
under surgery, so the characterization of false alarm is crucial to
avoid misclassification of low risk patients into a higher risk group.
Therefore, the validation of a stratifying method requires study-
ing not only the sensitivity but also its specificity. TWA is one of
the many indices suggested as SCD marker from the ECG signals
[1,32,33], and a recent review can be found in [34] about patients
at risk for insertion of prophylactic ICDs. Recent studies continue
to emphasize the relevance of TWA as SCD marker. For instance,
several risk markers were jointly benchmarked in [35] (including
TWA, heart rate turbulence, and ectopy) for evaluating the risk of
standard vs daily hemodyalisis procedures, in which TWA was sen-
sitive enough to show a trend to change in the second one. In a
recent study [36], the SCD risk was evaluated using the modified
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Fig. 5. ROC curves (upper graphs) and Se and Sp curves (lower graphs) against the significance level. (a) SNR = 8 dB and (b) SNR = 28 dB.
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Fig. 6. Estimated pdfs for ASe (upper graphs) and ASp (lower graphs), the 95% CI is represented with bars. (a) SNR =8 dB and (b) SNR = 28 dB.

moving average (MMA) method also for patients with hypertrophic
cardiomyopathy, showing a trend for TWA increasing with risk.
Another source of false alarm is the noise affecting the origi-
nal data. This is because the process by which the signal is gath-
ered during a TWA test generates ECGs with high levels of ar-
tifacts. In [37], multi-level noise signal quality classification was
made, and special attention was paid to merit figures, such as ac-
curacy, sensitivity, and specificity, in which the clinical relevance
of the noise was scrutinized with detail for general ECG diagnostic
applications. More, given that predictive alternans is a heart rate
dependent phenomenon, exercise testing is one of the most ex-
tensively used procedure to elevate the cardiac rhythm. Alterna-
tively, the analysis in ambulatory ECG records is currently yield-
ing promising results [1]. Anyway, either of these methods records
the ECG with patients in continuous movement. Thus, the study of
TWA detection methods under strong noise conditions is necessary
to determine whether a method is robust against artifacts. Aim-
ing for a wider clinical usefulness of TWA, the MMA method has

been often suggested as a robust method for TWA measurement
in long-term monitoring. In [38], the enhanced modified average
method and the correlation method were compared for microvolt
TWA identification in simulations and ECG recordings, by analyzing
healthy subjects and patients who had survived acute myocardial
infarction. The correlation method seemed to follow better non-
stationary, and also the enhanced approach trended to give a larger
number of false-positive TWA detection.

Toward this direction, a set of novel experiments that uses
only real ECG signals is proposed here to carry out the validation.
Briefly, the experimental test consists of detecting burst of TWA
randomly included in actual ECGs corrupted by physiological noise.
The design of this test bed in this way guarantees that the actual
physiological variability of the cardiac system is reproduced. Ad-
ditionally, this work analyzes the performance of an ST-T complex
estimation method based on the empirical mode decomposition,
originally conceived as a preprocessing block of a TWA detector.
The purpose of this block is to let the detector be able to deal
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with noise and artifact. Here the block is inserted as part of the
spectral method, which was chosen because it is one of the most
extensively used. Thus, the analysis of the EMD-based technique
operating as a preceding block of a qualified method that is used
in clinical routine will support our study.

The results are obtained following two methodologies: (1) ex-
amination of ROC curves and (2) hypothesis testing based on Boot-
strap resampling. From their analysis, we can state that the use
of the preprocessing block always reports superior performance in
terms of specificity, resulting in fewer false positives. On the other
hand, the detection probability (Se) outperforms in noisy environ-
ment, which is mostly the situation under which the analysis of
TWA is usually performed. According to these results, we can claim
that the introduction of the EMD block makes the system more ro-
bust due to the specificity growth, but this advance comes at the
expense of a sensibility reduction in artifact free conditions. Al-
though this is not the regular situation during a TWA test, the im-
provement of the sensibility for noise free ECG is an issue to be
addressed in future investigations. Currently we are exploring the
use of advanced EMD methods to enhance detection.

It is known that one problem of the EMD is the mode mix-
ing phenomenon, so other recent EMD versions have been devel-
oped to alleviate this issue, such as for example the Ensemble
EMD (EEMD) [39]. Under the hypothesis that the simple replace-
ment of the EMD by a more advanced version would outperform
the current results, we have developed preliminary experiments
with EEMD achieving the following findings. First of all, as EEMD
is based on averaging the resulting IMFs obtained from iteratively
applying EMD to the signal plus additive noise, it is not compu-
tationally comparable with EMD. Particularly, using EEMD has in-
creased the computational time from approximately 2 min to more
than 1 h (25 runs for IMF averaging) up to 6 h (100 runs). Further-
more, the use of the EEMD does not yield a clear improvement
over the EMD, because the reported K-score values are less regu-
lar and they exhibit higher variability. Our consideration is that the
simple substitution of the EMD without altering the set of IMFs se-
lection rules of Section 2.4 is not sufficient and that the application
of other EMD techniques deserve deeper observation and studies to
develop specific methods to process IMFs. Nevertheless, the EEMD
method has been suggested as a direction for providing with en-
hanced classification in beat-to-beat TWA detection from ECG sig-
nals, as pointed out in [40] for simulated signals and for a patients
database.

In any case, there is a strong interest in medical studies based
on TWA markers. In [41], a simulation study on TWA was created
by changing the duration of the ventricular heart cells action po-
tentials, and the magnitude in the surface ECG was obtained with
the time domain method. The presence of spatially concordant
TWA was scrutinized with the vectorcardiographic representation,
aiming to explain its spatial heterogeneity. In [42], the instability in
the atrial repolarization process recorded in the ECG was investi-
gated, by using an autorregressive and exogenous model both in si-
nus rhythm and in patients with atrial tachycardia. In [43], authors
studied the capacity of the novel cardiac late sodium inhibitor ele-
clazine in suppressing catecholamine-induced ventricular tachycar-
dia, and in reducing T-wave alternans in an animal model. These
studies show that the trend will undoubtedly continue to require
the accurate measurement of TWA towards new clinical scenarios,
hence the false alarm rate should be controlled in the TWA mea-
suring methods.

8. Conclusion
The introduction of the EMD-based block in combination with

the spectral method reports an advance in the detection of TWA
due to the specificity and sensitivity improvement for noisy con-

ditions. Therefore, because a TWA test is applied over ECG signals
with high content of artifacts, the use of the EMD block enables
the identification of most patients with fatal arrhythmias, but not
at the expense of the false alarm (1 — Sp) reduction.
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