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a b s t r a c t 

Background and objective : T-wave alternans (TWA) is a fluctuation of the ST-T complex occurring on an 

every-other-beat basis of the surface electrocardiogram (ECG). It has been shown to be an informative 

risk stratifier for sudden cardiac death, though the lack of gold standard to benchmark detection meth- 

ods has promoted the use of synthetic signals. This work proposes a novel signal model to study the 

performance of a TWA detection. Additionally, the methodological validation of a denoising technique 

based on empirical mode decomposition (EMD), which is used here along with the spectral method, is 

also tackled. 

Methods : The proposed test bed system is based on the following guidelines: (1) use of open source 

databases to enable experimental replication; (2) use of real ECG signals and physiological noise; (3) in- 

clusion of randomized TWA episodes. Both sensitivity ( Se ) and specificity ( Sp ) are separately analyzed. 

Also a nonparametric hypothesis test, based on Bootstrap resampling, is used to determine whether the 

presence of the EMD block actually improves the performance. 

Results : The results show an outstanding specificity when the EMD block is used, even in very noisy con- 

ditions (0.96 compared to 0.72 for SNR = 8 dB), being always superior than that of the conventional SM 

alone. Regarding the sensitivity, using the EMD method also outperforms in noisy conditions (0.57 com- 

pared to 0.46 for SNR = 8 dB), while it decreases in noiseless conditions. 

Conclusions : The proposed test setting designed to analyze the performance guarantees that the actual 

physiological variability of the cardiac system is reproduced. The use of the EMD-based block in noisy 

environment enables the identification of most patients with fatal arrhythmias. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The phenomenon of T-wave alternans (TWA), which is found

n the surface electrocardiogram (ECG) as a periodic pattern given

n an every-other-beat basis, is referred to the subtle variations

f amplitude, waveform, and duration of the ST-T complex. Also

amed repolarization alternans, it has been found to be a clini-

al method to identify patients at risk for malignant arrhythmias

nd also as a marker for stratifying risk of sudden cardiac death
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SCD) [1–3] . From a theoretical point of view, the problem state-

ent for its characterization is easy and well defined, as it ba-

ically consists of finding a periodic pattern. Although plenty of

omputerized methods have been proposed so far [4–10] , hardly

ny of them can be utilized because no gold standard has still been

eveloped for methodological validation of alternans techniques.

he reason is that these fluctuations mostly take on values of some

ew microvolts, which are invisible to human eye, thereby prevent-

ng the design of annotated databases. 

This lack of gold standard has resulted in testing methods

hich rely on synthetic signals, usually designed as the addition of

CG, alternant wave, and noise [4–13] , enabling proper TWA iden-

ification due to the actual knowledge of alternans features (wave-

orm, alternant voltage, and location, among others). Among the

ifferent approaches, those which utilize both simulated ECG and
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noise are less prescribed because they provide unrealistic signals,

unable to replicate the nonstationary conditions of a clinical envi-

ronment. Further, the composition of signals with a TWA pattern

in the full ECG duration constrains the study to a detection proba-

bility analysis. 

In stratifying SCD risk, patients classified into a high-risk group

are eligible to therapy. The treatment usually consists of im-

plantable cardioverter defibrillator (ICD), a small device embodied

in the chest under skin, which uses electrical pulses to control life-

threatening arrhythmias. Therefore, the desirable feature of a strat-

ifying method like alternans would be the identification of most

patients that will experience ventricular tachycardia or ventricular

fibrillation, and the exclusion of those who will not [14] . So re-

garding the performance of a method, the analysis of the detection

probability (sensitivity) is not only relevant, but also the evaluation

of false alarm (specificity), which is a subject of major concern be-

cause it causes misdiagnosis in patients with lower risk. So, in or-

der to characterize the specificity of a method, a study of episodes

detection should be conducted. For this purpose, rather than creat-

ing ECG with sustained TWA, i.e., with alternans in the full length

ECG, we propose the inclusion of TWA sections of limited duration

so that the detection study of random TWA bursts, both in length

and location, will enable the specificity assessment. 

In [15] , a technique based on the empirical mode decomposi-

tion (EMD) [16,17] was proposed to prevent the negative effects of

noise during TWA testing. Therefore, the method was designed to

provide with a noise free estimate of the ST-T complex to be used

as a preprocessing block of any TWA detection technique. It was

examined along with the spectral method (SM) [18,19] , though the

test setting was designed with sustained TWA, achieving only the

study of the sensitivity. 

The contribution of the present work is twofold. First, to de-

velop a method to study the performance of a TWA detection sys-

tem in its wide extension, i.e., in terms of sensitivity and speci-

ficity. For this goal, we propose a signal model to compile a test

setting which captures the actual dynamic of the cardiac sys-

tem based on the following guidelines: (1) use of open source

databases to enable experimental replication; (2) use of real ECG

and physiological noise; (3) inclusion of randomized TWA episodes.

Second, to accomplish the study of the specificity for the EMD-

based method proposed in [15] . In this case, the SM is chosen as

TWA detector because it is one of the most widely accepted algo-

rithms. Its validity has been proven in a number of clinical stud-

ies [20] and it is currently implemented in commercial equipments

for its use in the clinical routine. 

The performance validation is carried here out from two stand-

points. On the one hand, we use receiver operating characteristics

(ROC curves) to survey the detection capability of the proposed

scheme. Both sensitivity and specificity are also separately ana-

lyzed. At the same time, the method for validating signal process-

ing blocks proposed in [21] is applied in this work. The method

uses a set of statistics and nonparametric hypothesis test, based

on Bootstrap resampling [22] , to determine whether the presence

of the preprocessing block actually improves the performance. 

The remainder of this paper is organized as follows.

Section 2 briefly introduces the methods used in this work to

design the detecting TWA scheme, namely, EMD, SM, complexity

descriptors, and the procedure for estimating the ST-T complex.

Next, the overall block diagram of the detector is described in

Section 3 . In Section 4 , the proposed signal model is developed

and Section 5 presents the metrics and the statistical methods

to test our system. The results are shown in Section 6 and some

limitations of the work are provided in Section 7 . Finally, the

conclusions are derived in Section 8 . 

K  
. Brief review of signal processing techniques 

.1. Empirical mode decomposition 

The EMD [16] is a signal processing technique which decom-

oses a signal into a set of oscillatory functions denominated in-

rinsic mode functions (IMF). Any IMF is obtained through a signal

ependent method referred to as “sifting process”, whose purpose

s to elicit a function which matches with the definition of IMF:

unction with an equal number of extrema and zero crossings (or

t most differed by one) with its envelopes, as defined by all the

ocal maxima and minima, and being symmetric with respect to

ero. Thus, the original signal x [ n ] can be represented as the sum

f IMFs 

 [ n ] = 

L ∑ 

i =1 

c i [ n ] + q L [ n ] . (1)

he right hand side of the equation above consists of L IMFs and a

esidue signal, q L [ n ], which may be a constant, a monotonic slope,

r a function with only one extremum. An IMF represents a simple

scillatory mode as a counterpart to the simple harmonic function

sed in Fourier analysis. We refer to c i [ n ] as the i th-order IMF, and

y this convention, lower order IMFs capture fast oscillation modes

hile higher order IMFs typically represent slow oscillation modes.

rom a time-scale analysis viewpoint, lower order IMFs and higher

rder IMFs correspond to the fine and coarse scales, respectively. 

.2. Review of the spectral method 

The SM [19] looks for an every-other-beat periodicity corre-

ponding to the TWA pattern by processing the power spectral

ensity in beat series obtained from the surface ECG. After de-

ineating and separating the ventricular repolarization portion, the

ethod works over a set of M consecutive ST-T complexes. We may

hus denote the m -th ST-T complex as an N dimensional vector 

 m 

= [ x m 

(0) , x m 

(1) , . . . , x m 

(N − 1)] T . (2)

reprocessing the ECG for signal conditioning, such as linear filter-

ng, baseline wander elimination, QRS detection and delineation,

eat alignment and rejection, among others, is usually considered

o as to ameliorate the TWA interpretation [4] . The resulting repo-

arization segments are then allocated into the M × N matrix 

 = 

[
x 

T 
0 , x 

T 
1 , . . . , x 

T 
M−1 

]T = [ s 0 , s 1 , . . . , s N−1 ] . (3)

rom a column-wise standpoint, the M × 1 vector s n =
 s n (0) , s n (1) , . . . , s n (M − 1)] T contains the samples of M consecu-

ive heartbeats collected at the same time latency n . This sequence

s the so called beat series, and its power spectrum density func-

ion is used to find the TWA periodic pattern of 2 at the compo-

ent of 0.5 cycles/beat (beatquency domain) 

 n ( f ) = 

1 

M 

∣∣∣∣∣
M−1 ∑ 

m =0 

s n (m ) e − j2 π f n 

∣∣∣∣∣
2 

(4)

or n = 0 , 1 , . . . , N − 1 . The contribution of the whole ST-T segment

s given by the aggregate spectrum 

 ( f ) = 

1 

N 

N−1 ∑ 

n =0 

P n ( f ) . (5)

he K -score, also known as TWA ratio, determines the magnitude

f the power spectrum at the alternans frequency over the noise 

 = 

P (0 . 5) − μnoise 

σ
(6)
noise 
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Fig. 1. Example of ST-T estimation for distinct signals from the MIT-BIH Arrhyth- 

mia Database. The original ST-T complex (dotted line) is corrupted by noise (dashed 

line), from which the ST-T estimate is determined (continuous line). (a) Record 103 

and (b) Record 117. 

Fig. 2. Block diagram for the signal processing stages on the TWA detection system. 
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t  
here P (0.5) is the value of the aggregate spectrum (in Eq. (5) ) at

.5 cycles/beat, and μnoise and σ noise are the mean and the stan-

ard deviation of noise, which is estimated in an adjacent refer-

nce band close to the alternans frequency, typically around 0.4

ycles/beat. A K -score is taken as statistically significant when the

lternans component exceeds three times the level of noise, i.e., K

 3. 

.3. Complexity descriptors 

The spectral purity index [15,23] (SPI) is a very well suited pa-

ameter to measure complexity in oscillatory signals such as IMFs.

n this work, we use the SPI to assess complexity in the EMD do-

ain. The SPI is determined as 

PI = 

m 

2 
2 

m 0 m 4 

(7) 

here 

 i = 

∫ π

−π
ω 

i S x 
(
e jω 

)
dω (8) 

eing m i the i th-order spectral moment of the power spectrum

 x ( e 
j ω ) of a given signal x [ n ]. The SPI is used to analyze whether a

ignal may be described by a single frequency. It reports values in

he range [0, 1], where unity is attained for a pure sinusoid, which

orresponds to the simplest mode when dealing with oscillatory

ignals. Conversely, lower SPI values are linked to more complex

omponents. In biological systems, normal biomedical systems are

onsidered very complex [24] , so the SPI is used in this work to

ssess complexity in the EMD domain and separate normal com-

onents, usually more complex and less regular, from undesirable

nes, which may be identified by a high SPI value. For further de-

ails on spectral moment determination, which leads to SPI com-

utation, see [15,23] . 

.4. ST-T complex estimation 

The aim of the EMD-based method is to separate valid compo-

ents of the repolarization segment from noise. It is known that

he morphology of this section of the ECG is smooth, while noise

s a component characterized by fast variations. We then adopt the

ollowing model for any ST-T complex, x m 

[ n ] , 0 ≤ n ≤ N − 1 : 

 m 

[ n ] = s m 

[ n ] + v m 

[ n ] , 0 ≤ m ≤ M − 1 (9)

here s m 

[ n ] and v m 

[ n ] are signal and noise, respectively. As EMD

ecomposes a signal as a set of IMFs ordered from quicker to

lower oscillations, we assume that higher order IMFs, i.e., the

lower components, are signal. Thus, using EMD, we may express

he repolarization segments as follows: 

 m 

[ n ] = 

P−1 ∑ 

i =1 

c m,i [ n ] 

︸ ︷︷ ︸ 
ˆ v m [ n ] 

+ 

L ∑ 

i = P 
c m,i [ n ] + q m,L [ n ] 

︸ ︷︷ ︸ 
ˆ s m [ n ] 

(10) 

eing ˆ s m 

[ n ] and 

ˆ v m 

[ n ] the estimates of signal and noise, respec-

ively. P is the IMF order, which has to be determined so as to

eparate noise and signal. Let us remind that an IMF is considered

oise when it shows a regular oscillating pattern, which may be

ssessed using the SPI parameter. The rules to get proper separa-

ion of signal from noise components are as follows: 

1. Usually, lower order IMFs capture high frequency artifactual

components. In our case, the first two IMFs c m , 1 [ n ] and c m , 2 [ n ]

are very fast oscillating modes, so they are rejected as signal

assuming that most of the noise is captured by them. 

2. The residue q m, L [ n ] is considered as part of the signal because

it is a smooth and low varying component. Therefore, it is cho-

sen as part of the signal. 
3. The residue itself does not fully define the ST-T complex, so ad-

ditional IMFs (those that exhibit complex behavior) must be ap-

pended. Thus, starting from the L -th IMF toward lower order

IMFs, the value of P is assigned to the first IMF considered to

be noise, i.e., the one whose SPI is greater than a threshold ε. 

In summary, the identification of IMFs is achieved by study-

ng its complexity and taking IMFs components from higher

o lower order until a regular and simple IMF is identi-

ed, being this one considered as noise. The process ends

hen this condition is reached, the signal being comprised

f the P -th IMF up to the L -th one plus the residue:

 c m,P [ n ] , c m,P+1 [ n ] , . . . , c m,L −1 [ n ] , c m,L [ n ] , q m,L [ n ] } , 2 < P ≤ L . In this

ork, ε is set to be 0.7. Fig. 1 shows two examples of ST-T com-

lex estimation taken from distinct signals of the MIT-BIH Arrhyth-

ia Database [25] . Both panels depict the ventricular repolariza-

ion section of one heartbeat extracted from an ECG signal con-

aminated by physiological noise. 

. TWA detection framework 

Fig. 2 depicts a diagram of the complete TWA detection system

hat operates over a sliding window length ( M ) of 128 beats with
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Table 1 

Dataset of control ECGs. 

Record Lead V alt ( μV) 

117 2 85 

121 1 145 

2 65 

122 2 75 

123 1 55 

2 35 
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112 beats overlapping ( D ). Accordingly, p [ n ] denotes an ECG signal

window to be analyzed. 

First, R-peak detection is accomplished by using the reference

annotations associated to the database. A basic signal processing is

done to adjust the fiducial points to the actual R-peaks. The output

of this block ( r [ n ]) is a vector containing the temporal positions of

the R-peaks. 

In the next block, baseline wander (BW) cancellation is first

performed by third-order spline interpolation. Following, the ST-

 complexes are segmented by taking a variable distance from

the fiducial point, as proposed in [26] . Finally ST-T complexes are

aligned as proposed in [27] , a template is obtained as the median

of 128 consecutive ST-T complexes and is used to align each ST-T

complex by maximizing the cross correlation. The output of this

block is an M × N matrix M , where M is the number of beats and

N is the number of samples of each ST-T complex. 

In the following block, first the dynamic range of the alternant

wave ε is increased by subtracting the background ECG, which

is performed by subtracting consecutive rows in matrix M [28] .

Next, a low pass filter is used to reject noise out of the TWA band

( 0 . 3 –15 Hz) [4] . Therefore, the cutoff frequency is set to 15 Hz. 

Next, EMD-based ST-T estimation (see Section 2.4 ) is performed

starting from matrix M S . To end, TWA detection is performed by

means of the SM (see Section 2.2 ). 

4. Signal model 

Benchmarking TWA methods cannot be easily accomplished

due to the lack of annotated databases. Alternatively, the use of

synthetic ECGs has been generally accepted [4–12] because they al-

low the TWA parameters to be known by artificially introducing al-

ternans. In order to achieve a realistic setting to perform the eval-

uation of the proposed method, we propose to deal only with real

signals. Additionally, for the sake of reproducibility, the actual am-

bulatory ECGs should only be taken from open source databases.

In our case, we use signals from Physionet [25] . Thus, the strategy

employed here consists of inserting TWA and noise into control

ECGs. 

The SM is currently the most accepted method to analyze alter-

nans. Among the reasons for that, it is one of the early techniques

developed for this purpose [29] , but foremost, among the many

clinical studies carried out within the scope of TWA, the vast ma-

jority have relied on the SM as the means to find alternans [20] . As

this work seeks to determine whether an EMD-based method for

estimating the ST-T complex is feasible when used along with the

SM to detect TWA, we use the SM as a trusted method to design a

dataset of ECGs free from TWA. 

4.1. Simulated TWA in real ECGs 

Control ECGs are collected from the MIT-BIH Arrhythmia

Database ( f s = 360 Hz) according to the following criteria: (1) a

signal is regarded as candidate only if more than 99% of its heart-

beats are annotated as “normal ”; (2) from candidates, only those

without TWA are considered. The first two columns of Table 1
hows the ECG recordings that, according to our methods, have

een defined to be control. The dataset consists of a total of 6 ECG

ignals taken from 4 records. To describe the signal model, we refer

ny of these control ECGs with the variable p c [ n ] , 0 ≤ n ≤ L p − 1 ,

here L p takes on the value of the full ECG length, say 650,0 0 0

amples (about 30 min). 

Physiological noise from the MIT-BIH Noise Stress Test

atabase [25] is also used to obtain ECGs with different signal-to-

oise ratio (SNR). The simulations are performed combining mus-

ular activity artifact, which is predominant in record ‘ ma ’, and

lectrode motion artifact in record ‘ em ’. Noise is obtained as fol-

ows: (1) after lowpass filtering (FIR with cutoff frequency set to

.75 Hz) to obtain zero mean realizations (by baseline drift cancel-

ation), the 2 noise series contained in each record are first normal-

zed with respect to its variance and subsequently concatenated;

2) the resulting ‘ ma ’ and ‘ em ’ noise records with unit variance are

hen combined into one single physiological noise record denoted

s v [ n ] , 0 ≤ n ≤ L v − 1 ( L v = 2 × L p samples). From v [ n ], a noise re-

lization segment v s [ n ] is randomly extracted: 

 s [ n ] = 

{
v 
[
( ( n − � ξ ( s ) · L v � ) ) L v 

]
, 0 ≤ n ≤ L p − 1 

0 , remaining 
(11)

here ξ is the uniform random variable U (0, 1), � · � stands for

ounding to the smallest integer, and (( A )) B denotes A modulo B .

his operation takes on the first L p samples of the noise realization

 [ n ] after random rotation. A noisy ECG may then be obtained as:

p v [ n ] = p c [ n ] + β · v s [ n ] (12)

here β is a scaling parameter employed to obtain ECGs at differ-

nt SNRs. 

The alternant waves used in this study were estimated from

n ECG with clear TWA recorded during a percutaneous coronary

ntervention, from the dataset used in [30] . These 15 waves are

moothed and resampled to fit the control ECGs with f s = 360 Hz.

o obtain ECGs with TWA, an alternant waveform is added to the

T-T section of every-other-beat of the signal. Its amplitude is es-

ablished by a function g k , where k refers to the k -th heartbeat 

 k = 

{
α, k even 

0 , k odd . 
(13)

hus, let ε[ n ] , 0 ≤ n ≤ L ε − 1 , be an alternant wave, where L ε �
 p , the resulting ECG for testing is 

p[ n ] = p v [ n ] + 

N h ∑ 

k =1 

ψ[ k ] · g k · ε[ n − n k − n J ] (14)

here N h stands for the number of R peaks of p c [ n ]. Parameter n k 
enotes the ST-T onset of the k -th beat and time delay n J intro-

uces a jitter effect, which is characterized as a zero mean Gaus-

ian random variable with a standard deviation corresponding to

0 ms. The function ψ [ k ] is defined in the beat series domain as

 composite window function constructed by concatenating simple

indow functions w j [ k ], as follows, 

[ k ] = 

Q ∑ 

j=1 

w j [ k − k j ] (15)

here Q stands for the number of concatenated windows whose

ength are N j . The purpose of this function is to obtain Q alternans

pisodes in p [ n ]. 

.2. Experimental database 

In order to perform the evaluation experiments, for each SNR,

e generated a database of 100 records. Following we describe the

rocedure to obtain each of these records: 
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Fig. 3. TWA analysis performed over the first lead of recording 123 at SNR = 12 dB 

with and without the EMD-based ST-T complex estimator. (a) K -score as a function 

of the signal window and (b) K -score as a function of the heartbeats. 
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1. The control ECG ( p c [ n ] taken from Table 1 ) is randomly chosen

according to a uniform distribution. 

2. The physiological noise segment ( v s [ n ] of Eq. (11) ) is extracted

beginning at a random position in the complete noise record

and added to p c [ n ] according to Eq. (12) . 

3. The alternant wave ( ε[ n ]) is also randomly selected and added

to p c [ n ] according to Eq. (14) . 

4. The insertion point of ε[ n ] in the ST-T segment varies according

to a normal distribution with σ = 20 ms. 

5. The alternant episodes are included as bursts and the number

of bursts in a signal, Q in Eq. (15) , is randomly selected between

1 and 4. 

6. The length of each burst ( N j ) is also randomly set between 64

and 128 beats. 

7. The function w j [ k ] ( Eq. (15) ) is a Tukey window, which is used

to simulate a progressively increasing alternant amplitude ( g k )

at the beginning of the burst, as well as a decreasing g k at the

end of the burst. The ratio between the taper section with re-

spect to the total length window has been chosen to be 0.4. 

8. The insertion point of each burst in the signal, k j in Eq. (15) , is

also randomly selected. 

9. The amplitude of the alternant waves for each control ECG

(third column of Table 1 ) is set to be the lower voltage which

yields a detection probability of 1 with sustained TWA using

the SM, since it is the reference method in this study. Here the

detection probability is determined as the ratio between cor-

rect detections (number of K -scores greater of 3) and the total

number of computed K -scores. 

With this elaborated procedure we obtain a database with a

ery high variability to evaluate the performance of the method. 

. Performance assessment 

.1. Objective metrics 

Regarding the alternant wave voltage ( Table 1 ), when inserted

s in Eq. (13) , it is defined as: 

 alt = max { | ε [ n ] | } , n = 0 , . . . , L ε − 1 , (16)

he quality of p [ n ] (14) is assessed by means of the SNR 

NR = 10 · log 

∑ 

n 
p 2 a [ n ] 

∑ 

n 
( βv [ n ] ) 

2 
(17) 

here p a [ n ] = p c [ n ] + 

∑ N h 
k =1 

ψ [ k ] · g k · ε[ n − n k − n J ] is a clean ECG

ontaining TWA. 

To evaluate the performance, we use the sensitivity, which as-

esses the probability of a TWA event being detected, 

e = 

T P 

T P + F N 

(18) 

here TP and FN stand for true positive and false negative, re-

pectively. The analysis of false alarm is addressed by means of

he specificity, which determined the probability of a non-existent

WA event being detected, 

p = 

T N 

T N + F P 
(19) 

here TN and FP stand for true negative and false positive (wrong

etections), respectively. 

Fig. 3 shows the K -score resulting from a TWA analysis per-

ormed over a signal p [ n ]. The two curves of the upper panel

 Fig. 3 a) correspond to the SM with and without the EMD-based

T-T complex estimator, given as a function of the signal window

ver which the SM operates. There is one single K -score per seg-

ent. The lower panel ( Fig. 3 b) displays the same result but now
n the beat domain, so here we can appreciate the window func-

ion ψ[ k ] of Eq. (14) (thick continuous line) that is used to in-

ert alternans, which in this case contains a single TWA episode.

ven though the Tukey window around the 950-th heartbeat de-

imits the area where the alternant wave is included, the interval

o which a TWA can be found is wider (thick dashed line) due to

he effect of the sliding window. 

As the experiment in this work is concerned with the detec-

ion of TWA episodes, we will consider that an alternans episode

as been recognized if at least 2 consecutive K -scores have been

ound to be significant, namely, K > 3. The reason is that one

ositive K -score means that a TWA is found as a result of the

nalysis of a signal window of M = 128 heartbeats. The next pos-

tive K -score means that the next signal segment of 128 heart-

eats, where D = 112 beats are shared with the previous segment

hile 16 news are incorporated, still elicit positive TWA. In the

xample of Fig. 3 a (upper panel), there are three sections where

ne of them, labeled with the thick horizontal line, highlights the

WA burst. So, according to the criterion defined earlier, with the

M alone (continuous curve with dots), the resulting statistics are:

 P = 0 , F N = 1 , T N = 1 , F P = 1 . When including the EMD-based

lock to perform detection (continuous curve with circles), we ob-

ain: T P = 1 , F N = 0 , T N = 2 , F P = 0 . 

.2. Bootstrap resampling 

In this section, a Bootstrap resampling scheme, already pre-

ented in [21] , is used in the evaluation of the performance dif-

erences between the EMD-based method and the SM. 

We can study sampling variability by sampling by an artificial

opulation, for example this artificial population can be the dataset

rom which we seek to draw inferences. Since the dataset is itself

 sample of the whole population, we are taking a sample from

he sample, i.e. resampling. This does not provide more informa-

ion from the population, but it does provide us with a way of un-

erstanding the consequences of sampling variability for drawing
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Fig. 4. Estimated pdfs for 
Se (top) and 
Sp (bottom), the 95% CI is represented 

with bars, SNR = 12 dB. 
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inferences about the population based on our data. The resampling

method can be used to compute the confidence interval (CI) of

many different types of statistics and to perform hypothesis test-

ing [31] . 

In the present problem we need to decide whether the per-

formance differences between EMD-based method and the SM are

statistically significant in terms of a given performance statistic. 

Our statistical hypothesis test will contrast the null hypothesis

( H 0 ) that both methods have the same performance, against the al-

ternative hypothesis ( H 1 ) that they have different performance. Let

u SM 

and u EMD denote the performance statistic obtained for each

method. Then, the hypothesis test can be stated as 

H 0 : 
u = 0 

H 1 : 
u � = 0 (20)

where 
u = u EMD − u SM 

. 

In order to approximate the probability density function (pdf) of

u SM 

, u EMD , and subsequently of 
u , we use the well-known plug-in

principle. In brief, let Z = { z j , j = 1 , . . . , L } be a set of L measures,

and let u be a statistical magnitude estimated by using an operator

O on the observed set, i.e., u = O (Z) . Since actual f Z ( Z ) is unknown

and only a finite number of samples are available, and operator O

can be complex, then f u ( u ) will be often impractical to compute.

Alternatively, we can approximate f Z ( Z ) for its plug-in empirical

distribution. We build sets Z ∗( b ) (so-called resamples from Z ), by

sampling with replacement up to L elements of Z . Now, a replica-

tion of statistic u is obtained as u ∗(b) = O (Z ∗(b)) , and it represents

an estimate of this statistic. By repeating the resampling procedure

for b = 1 , . . . , B, an estimated pdf is given by 

ˆ f u (u ) = 

1 

B 

B ∑ 

b=1 

δ(u − u 

∗(b)) . (21)

An estimation of the CI for 
u , can be readily obtained from or-

dered statistics in 
u ∗( b ) resamples [22] . The differences between

the two methods are statistically relevant in terms of statistic u

when the 95% IC of 
u does not overlap the zero value. 

In the present problem of TWA detection, Z stands for TP, FP, TN

and FN measures, and u stands for specificity ( Sp ) and sensibility

( Se ). 

We start from two matrices of size 100 × 4, each row contains

the TP, FP, TN, FN values of each signal p [ n ] (see (14) ), one for each

TWA detection method ( SM and EMD ). In each resampling itera-

tion these matrices are resampled with replacement, paired and

row-wise, this is, all the measures from one single signal remain

together. The Sp and Se values are computed in each iteration. At

the end of B iterations an estimation of the pdfs for the Sp and

Se are obtained for the SM ( Sp SM 

, Se SM 

) and for the EMD-based

method ( Sp EMD , Se SM 

), and the estimations of the pdfs for 
Sp and


Se are obtained as 


Sp = Sp EMD − Sp SM 


Se = Se EMD − Se SM 

. (22)

In our experiments the number of resamplings is set to B = 10 0 0 . 

Fig. 4 shows an example of the estimated pdfs for 
Se and 
Sp

represented as histograms, the 95% CI is represented with bars. If

the CI does not contain the zero the differences between the SM

and the EMD-based method are statistically significant. The top

panel shows that differences in Se are not significant, but Sp (bot-

tom panel) is significantly higher for the EMD method. 

6. Results 

As the proposed method has been originally conceived to coun-

teract the effect of noise, the system is analyzed in two environ-

ments: at an SNR of 8 dB, which represents severe noisy condi-

tions, and at 28 dB. ROC curves, displayed in both the upper graphs
f Fig. 5 , are obtained by computing Se and Sp at different signif-

cance level, i.e., using different threshold values to elicit a signif-

cant K -score. In noisy milieu ( Fig. 5 a), the area under the curve

AUC) is greater when the EMD block is used (0.82 against 0.63),

eing approximately the same as that of the SM when the amount

f noise is irrelevant (top ( Fig. 5 b). This behavior indicates that the

etectability improves in noisy environments. 

For a closer understanding, we may separately examine Se and

p , depicted in lower graphs of Fig. 5 . At this point, the attention

s drawn to a threshold value equal to 3 because this is the sig-

ificance level taken by the K -score in clinical practice. We may

ee that the specificity is outstanding when the EMD block is used,

ven in the noisy case ( Sp EMD = 0 . 96 against Sp = 0 . 72 ), being al-

ays superior than that of the regular SM method. Regarding the

ensitivity, using the EMD method also outperforms in the noisy

ase, while it decreases in noiseless conditions. 

The performance evaluation scheme presented in

ection 5.2 confirms the statistical significance of the pre-

ented results. Fig. 6 shows the estimated pdfs for 
Se and 
Sp

t SNR = 8 dB ( Fig. 6 a) and SNR = 28 dB ( Fig. 6 b). The Sp is

ignificantly better when the EMD block is used at both SNR

alues. The Se is also significantly better using the EMD method

n noisy conditions, whereas it is significantly worse in low noise

onditions. 

. Discussion 

TWA has been found to be a predictor of SCD, so it is used

n many studies as a potential method for stratifying risk. Ther-

py against SCD is traumatic because it requires to insert an ICD

nder surgery, so the characterization of false alarm is crucial to

void misclassification of low risk patients into a higher risk group.

herefore, the validation of a stratifying method requires study-

ng not only the sensitivity but also its specificity. TWA is one of

he many indices suggested as SCD marker from the ECG signals

1,32,33] , and a recent review can be found in [34] about patients

t risk for insertion of prophylactic ICDs. Recent studies continue

o emphasize the relevance of TWA as SCD marker. For instance,

everal risk markers were jointly benchmarked in [35] (including

WA, heart rate turbulence, and ectopy) for evaluating the risk of

tandard vs daily hemodyalisis procedures, in which TWA was sen-

itive enough to show a trend to change in the second one. In a

ecent study [36] , the SCD risk was evaluated using the modified
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Fig. 5. ROC curves (upper graphs) and Se and Sp curves (lower graphs) against the significance level. (a) SNR = 8 dB and (b) SNR = 28 dB. 

Fig. 6. Estimated pdfs for 
Se (upper graphs) and 
Sp (lower graphs), the 95% CI is represented with bars. (a) SNR = 8 dB and (b) SNR = 28 dB. 
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oving average (MMA) method also for patients with hypertrophic

ardiomyopathy, showing a trend for TWA increasing with risk. 

Another source of false alarm is the noise affecting the origi-

al data. This is because the process by which the signal is gath-

red during a TWA test generates ECGs with high levels of ar-

ifacts. In [37] , multi-level noise signal quality classification was

ade, and special attention was paid to merit figures, such as ac-

uracy, sensitivity, and specificity, in which the clinical relevance

f the noise was scrutinized with detail for general ECG diagnostic

pplications. More, given that predictive alternans is a heart rate

ependent phenomenon, exercise testing is one of the most ex-

ensively used procedure to elevate the cardiac rhythm. Alterna-

ively, the analysis in ambulatory ECG records is currently yield-

ng promising results [1] . Anyway, either of these methods records

he ECG with patients in continuous movement. Thus, the study of

WA detection methods under strong noise conditions is necessary

o determine whether a method is robust against artifacts. Aim-

ng for a wider clinical usefulness of TWA, the MMA method has
een often suggested as a robust method for TWA measurement

n long-term monitoring. In [38] , the enhanced modified average

ethod and the correlation method were compared for microvolt

WA identification in simulations and ECG recordings, by analyzing

ealthy subjects and patients who had survived acute myocardial

nfarction. The correlation method seemed to follow better non-

tationary, and also the enhanced approach trended to give a larger

umber of false-positive TWA detection. 

Toward this direction, a set of novel experiments that uses

nly real ECG signals is proposed here to carry out the validation.

riefly, the experimental test consists of detecting burst of TWA

andomly included in actual ECGs corrupted by physiological noise.

he design of this test bed in this way guarantees that the actual

hysiological variability of the cardiac system is reproduced. Ad-

itionally, this work analyzes the performance of an ST-T complex

stimation method based on the empirical mode decomposition,

riginally conceived as a preprocessing block of a TWA detector.

he purpose of this block is to let the detector be able to deal
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with noise and artifact. Here the block is inserted as part of the

spectral method, which was chosen because it is one of the most

extensively used. Thus, the analysis of the EMD-based technique

operating as a preceding block of a qualified method that is used

in clinical routine will support our study. 

The results are obtained following two methodologies: (1) ex-

amination of ROC curves and (2) hypothesis testing based on Boot-

strap resampling. From their analysis, we can state that the use

of the preprocessing block always reports superior performance in

terms of specificity, resulting in fewer false positives. On the other

hand, the detection probability ( Se ) outperforms in noisy environ-

ment, which is mostly the situation under which the analysis of

TWA is usually performed. According to these results, we can claim

that the introduction of the EMD block makes the system more ro-

bust due to the specificity growth, but this advance comes at the

expense of a sensibility reduction in artifact free conditions. Al-

though this is not the regular situation during a TWA test, the im-

provement of the sensibility for noise free ECG is an issue to be

addressed in future investigations. Currently we are exploring the

use of advanced EMD methods to enhance detection. 

It is known that one problem of the EMD is the mode mix-

ing phenomenon, so other recent EMD versions have been devel-

oped to alleviate this issue, such as for example the Ensemble

EMD (EEMD) [39] . Under the hypothesis that the simple replace-

ment of the EMD by a more advanced version would outperform

the current results, we have developed preliminary experiments

with EEMD achieving the following findings. First of all, as EEMD

is based on averaging the resulting IMFs obtained from iteratively

applying EMD to the signal plus additive noise, it is not compu-

tationally comparable with EMD. Particularly, using EEMD has in-

creased the computational time from approximately 2 min to more

than 1 h (25 runs for IMF averaging) up to 6 h (100 runs). Further-

more, the use of the EEMD does not yield a clear improvement

over the EMD, because the reported K -score values are less regu-

lar and they exhibit higher variability. Our consideration is that the

simple substitution of the EMD without altering the set of IMFs se-

lection rules of Section 2.4 is not sufficient and that the application

of other EMD techniques deserve deeper observation and studies to

develop specific methods to process IMFs. Nevertheless, the EEMD

method has been suggested as a direction for providing with en-

hanced classification in beat-to-beat TWA detection from ECG sig-

nals, as pointed out in [40] for simulated signals and for a patients

database. 

In any case, there is a strong interest in medical studies based

on TWA markers. In [41] , a simulation study on TWA was created

by changing the duration of the ventricular heart cells action po-

tentials, and the magnitude in the surface ECG was obtained with

the time domain method. The presence of spatially concordant

TWA was scrutinized with the vectorcardiographic representation,

aiming to explain its spatial heterogeneity. In [42] , the instability in

the atrial repolarization process recorded in the ECG was investi-

gated, by using an autorregressive and exogenous model both in si-

nus rhythm and in patients with atrial tachycardia. In [43] , authors

studied the capacity of the novel cardiac late sodium inhibitor ele-

clazine in suppressing catecholamine-induced ventricular tachycar-

dia, and in reducing T-wave alternans in an animal model. These

studies show that the trend will undoubtedly continue to require

the accurate measurement of TWA towards new clinical scenarios,

hence the false alarm rate should be controlled in the TWA mea-

suring methods. 

8. Conclusion 

The introduction of the EMD-based block in combination with

the spectral method reports an advance in the detection of TWA

due to the specificity and sensitivity improvement for noisy con-
itions. Therefore, because a TWA test is applied over ECG signals

ith high content of artifacts, the use of the EMD block enables

he identification of most patients with fatal arrhythmias, but not

t the expense of the false alarm ( 1 − Sp) reduction. 
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