	Escuela Politécnica Superior	
	Departamento de Teoría de la Señal y Comunicaciones	
	Grados TIC	
	Asignatura: Análisis de Circuitos - P.E.I. 1	
	Curso: 1º. Grupo Grande: E Grupo Pequeño:	
	Surnames:	
UNIVERSIDAD DE ALCALÁ	Name:	
	D.N.I.:	
	Date: 7 – March – 2018	
	·	

Instructions

- Fill in all the data required in the first page.
- The exam consists on 2 problems and one test with 5 questions. Check that you have all of them.
- The duration of the exam is 1 hour 30 minutes.
- Books or notes are not allowed.
- Read carefully each problem before starting to answer. The grading of each exercise is indicated.
- It is compulsory to write your name on each sheet. Any sheet without a name will be immediately removed.
- Start each problem in a new page.
- Before delivering the exam sort the pages.
- SWITCH OFF AND KEEP AWAY THE MOBILE PHONE.
- The grading of the exam will take into account the following factors:
 - 1. Clean and ordered responses.
 - 2. Explanation and reasoning in accordance to the studied theory.
 - 3. Explanations of each adopted step in a resolution.
 - 4. Simplicity and efficiency of the adopted solution.
 - 5. The obtained results.

Problem 1 (3 points)

In the circuit of the figure, the switcher is closed since $t = -\infty$, and is opened at t = 0 s. While the switcher is closed, the temporal expressions for the current trough the coil and the voltage at the capacitor are, respectively, $i_L(t) = \frac{1}{2} \cdot \cos(\omega t) A$ and $v_C(t) = 2\sqrt{2} \cdot \cos\left(\omega t + \frac{\pi}{4}\right) V$. Otain:

- a) The expression for the Laplace transform of the current trough the coil, $I_L(s)$, for t > 0 as a function of L and C.
- b) The values of L and C to have a critically damped solution, knowing that the natural frequency is $\sqrt{2}$ rad/s.

Problem 2 (2 points)

In the circuit of the figure, the switcher is in position (1) since $t = -\infty$. At t = 0 s the switcher changes to the position (2), producing the following time evolution of the current trough the coil, $i_L(t)$:

$$i_L(t) = k_1 \cdot e^{-\frac{t}{2}} + k_2 \cdot e^{-\frac{11}{2}t} + 40 \text{ A} \quad t > 0$$

being k_1 and k_2 real constants.

- a) Indicate, in a reasoning way, the type of damping of the circuit.
- b) Knowing that the current through the coil at $t = 0^+$ is 10 A, obtain the values of R, L and C.
- c) Obtain the expression of $e_2(t)$

DATA :

$$e_1(t) = 5 V$$