PROBLEMS OF CHAPTER 2: Two-port networks.

February 22, 2018

Problem 2.1

The two-port network Q of figure $\mathbb{1}(\mathrm{a})$ is connected in the circuit shown in Figure $\mathbb{1}(\mathrm{b})$. Obtain:
a) The family of z-parameters for the two-port network.
b) The power absorbed by the load Z_{R}.

Figure 1

$$
\begin{array}{rccc}
\text { Data }: & R=1 \Omega & ; \quad \alpha=1 \Omega & ; \quad \beta=1 \Omega^{-1} \\
& Z_{g}=1 \Omega & ; \quad Z_{R}=1+j \Omega & ; \quad e_{g}(t)=4 \sin (t) V
\end{array}
$$

Result

a) $\left(\begin{array}{ll}z_{11} & z_{12} \\ z_{21} & z_{22}\end{array}\right)=\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$
b) $P_{Z_{R}}=\frac{4}{5} \cdot W$

Problem 2.2

a) On the quadripole Q_{1} we obtain the measurements shown in figure $\mathbb{1}$ (a) and (b), obtaining the following results:

Circuit (a) : $\left\{\begin{array}{l}i_{1}(t)=2 \sin (\omega t) \mathrm{A} \\ i_{2}(t)=2 \sin \left(\omega t-\frac{\pi}{2}\right) \mathrm{A}\end{array} \quad ; \quad \operatorname{Circuit}(\mathrm{b}):\left\{\begin{array}{l}i_{3}(t)=2 \sin \left(\omega t-\frac{\pi}{2}\right) \mathrm{A} \\ v_{4}(t)=\sin \left(\omega t+\frac{\pi}{2}\right) \mathrm{V}\end{array}\right.\right.$

Obtain the h-parameters of the quadripole.

Figure 1
Data: $e_{g}(t)=4 \sin (\omega t) \mathrm{V}$
b) Obtain the T-parameters of the quadripole with the structure shown in figure 2

Figure 2
Data: $R=\alpha=\frac{1}{2} \Omega ; Z_{C}=-\frac{1}{2} j \Omega$.

Result

a) $\left(h_{Q_{1}}\right)=\left(\begin{array}{cc}2 \Omega & 4-4 j \\ -j & -2 j \Omega^{-1}\end{array}\right)$
b) $\left(T_{Q_{2}}\right)=\left(\begin{array}{cc}j & \frac{1+j}{2} \Omega \\ (-1+j) \Omega^{-1} & \frac{1^{2}+j}{2}\end{array}\right)$

Problem 2.3

The quadripole Q_{1} of the associated quadripoles shown in figure 2 is $R L C$ and measurements on this quadripole are shown in figure $\mathbb{1}(\mathrm{a})$ and (b). The quadripole Q_{2} is symmetrical and two of his parameters are $h_{11}=5 \Omega$ and $h_{12}=1$.
a) Obtain a family of parameters that characterizes the association of the quadripoles Q_{1} and Q_{2} as it is shown in Figure 2,
b) Obtain the impedance Z_{e}.
c) Obtain $i_{2}(t)$.

Figure 1

Figure 2
DATOS: $\quad R_{g}=10 \Omega ; \quad R_{L}=50 \Omega ; \quad e_{g}(t)=10 \cos \left(\omega_{0} t\right) V$

$$
Q_{3}=\left(\begin{array}{cc}
A=\frac{\sqrt{2}}{2} & B=25 \sqrt{2} j \Omega \\
C=\frac{\sqrt{2}}{100} j \Omega^{-1} & D=\frac{\sqrt{2}}{2}
\end{array}\right)
$$

Result

a) $\left(\begin{array}{ll}y_{11}^{T} & y_{12}^{T} \\ y_{21}^{T} & y_{22}^{T}\end{array}\right)=\left(y_{Q_{1}}\right)+\left(y_{Q_{2}}\right)=\left(\begin{array}{cc}\frac{3}{10} & -\frac{1}{10} \\ -\frac{1}{10} & \frac{3}{5}\end{array}\right)+\left(\begin{array}{cc}\frac{1}{5} & -\frac{1}{5} \\ -\frac{1}{5} & \frac{1}{5}\end{array}\right)=\left(\begin{array}{cc}\frac{1}{2} & -\frac{3}{10} \\ -\frac{3}{10} & \frac{4}{5}\end{array}\right)$
b) $Z_{e}=50 \Omega$
c) $i_{2}(t)=\frac{1}{67} \cdot \cos \left(\omega_{0} t+\pi\right) A$

Problem 2.4

In figure 1 (a) an association of two quadripoles, Q_{A} and Q_{B}, is shown and their circulation currents are zero. The quadripole Q_{A} is symmetrical and some measurements on Q_{A} are shown in figure 1(b). The quadripole Q_{B} is $R L C$ and for this quadripole it is known $Z_{1, O}=\frac{4}{5} \Omega, Z_{1, S}=0 \Omega$, $Z_{2, O}=\frac{1}{5} \Omega$ and the phase of the inverse voltage gain with input port in open circuit is zero. Calculate a family of parameters that characterizes the association of the two quadripoles as it is shown in Figure 1 (a)

(a)

(b)

Figure 1

Result

$$
\left(h_{Q_{T}}\right)=\left(h_{Q_{A}}\right)+\left(h_{Q_{B}}\right)=\left(\begin{array}{cc}
\frac{3}{2} \Omega & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} \Omega^{-1}
\end{array}\right)+\left(\begin{array}{cc}
0 \Omega & 2 \\
-2 & 5 \\
\Omega^{-1}
\end{array}\right)=\left(\begin{array}{cc}
\frac{3}{2} \Omega & \frac{5}{2} \\
-\frac{5}{2} & \frac{11}{2} \Omega^{-1}
\end{array}\right)
$$

Problema 2.5

In the circuit of the figure (a) the currents $i_{1}(t)$ and $i_{2}(t)$ are known. Furthermore, the internal structure of the quadripole Q is the one shown in figure 1(b).
a) Calculate the values of R_{1} and R_{2}.
b) Obtain $i_{1}(t)$ if $Z_{L} \rightarrow \infty$.

Figure 1

$$
\begin{array}{ccc}
D A T O S: & e_{g}(t)=4 \cdot \cos (\omega t) \mathrm{V} . & ; \quad i_{1}(t)=\cos (\omega t) A \quad ; \quad i_{2}(t)=\frac{1}{4} \cdot \cos (\omega t+\pi) \mathrm{A} \\
R_{g}=1 \Omega & ; \quad R_{L}=2 \Omega &
\end{array}
$$

Result

a) $R_{1}=1 \Omega ; R_{2}=\frac{2}{3} \Omega$
b) $i_{1}(t)=\frac{12}{13} \cos (\omega t) A$

Problem 2.6

For a symmetrical quadripole, Q, we have performed the measurements shown in figure 1(a). Calculate a family of parameters to characterize the association shown in figure 1(b) of two of these quadripoles.

Figure 1

Data: $Z_{1}=2 \Omega$ and $Z_{2}=4 \Omega$.

Result

$$
\left(g_{Q_{T}}\right)=\left(\begin{array}{cc}
1 \Omega^{-1} & \pm 2 j \\
\mp 2 j & 8 \Omega
\end{array}\right)
$$

Problem 2.7

For the associated quadripoles shown in Figure 1, calculate:
a) The most adequate family of parameters for the association of quadripoles Q, which is shown in Figure 2.
b) The time-domain expression of the current that goes through the source $e_{g}(t)$.

Figure 1

$$
D A T A: \quad e_{g}(t)=17 \operatorname{sen}(t) V \quad ; \quad R_{g}=\frac{2}{5} \Omega \quad ; \quad R_{L}=\frac{15}{2} \Omega
$$

Figure 2

Result

a) $\left(g_{Q}\right)=\left(\begin{array}{cc}\frac{1}{2} \cdot(1+j) \Omega^{-1} & -\frac{3}{2} \\ \frac{5}{4} & 0 \Omega\end{array}\right)$
b) $i_{1}(t)=5 \sqrt{17} \operatorname{sen}(t+0.245) A$

Problem 2.8

In the circuit of the figure 1 , we know the h-parameters of the two-port network $\left(Q_{T}\right)$. Note that this quadripole Q_{T} represents the association of two identical quadripoles (Q). However, the internal structure of the quadripole Q is not known, but it can be one of the structures shown in figure 2(a) or (b).

$$
(h)_{Q_{T}}=\left(\begin{array}{cc}
5 \Omega & 1 \\
-\frac{1}{2} & \frac{1}{2} \Omega^{-1}
\end{array}\right)
$$

Figure 1

Answer the following questions:

a) Reason and choose, without performing any calculation, which of the two circuits (a) or (b) shown in figure 2 corresponds to the quadripole Q of the figure 1.
b) Calculate the values of the elements of the quadripole Q : (R and α if the selected Q is (a), or R if the selected Q is (b)).
c) Calculate the power dissipated by R_{L}.

$$
\text { Data : } \quad e_{g}(t)=13 \cos (\omega t) V ; \quad R_{g}=1 \Omega ; \quad R_{L}=2 \Omega
$$

Result

a) (a).
b) $R=2 \Omega ; \alpha=1 \Omega$
c) $P_{R_{L}}=\frac{1}{4} \mathrm{~W}$

Problem 2.9

We want to associate the two quadripoles Q_{A} and Q_{B}, as it is shown in figure $\begin{aligned} & \text {. For the quadripole }\end{aligned}$ cuadripolo Q_{A} the z-parameters are known. From the quadripole Q_{B} we know that it is reciprocal and the measurements shown in figure 2,

Figure 1
DATOS: $R_{g}=R_{L}=2 \Omega ; e_{g}(t)=\cos (t) V, \quad\left(z_{Q_{A}}\right)=\left(\begin{array}{cc}-4 j \Omega & -2 j \Omega \\ -2 j \Omega & 0 \Omega\end{array}\right)$.

Figure 2
DATA: $Z_{1}=1 \Omega ; \quad Z_{2}=2 \Omega ; \quad i_{1}(t)=\cos (t) A ; \quad i_{2}(t)=2 \cos (t) A$
a) Obtain the adequate family of parameters for Q_{A} y Q_{B} so that they can be association to the Q_{T}.
b) The power dissipoated by the resistor R_{L} in the circuit of the figure 1 .

Result

а) $\left(g_{Q_{A}}\right)=\left(\begin{array}{cc}\frac{j}{4} \Omega^{-1} & -\frac{1}{2} \\ \frac{1}{2} & j \Omega\end{array}\right),\left(g_{Q_{B}}\right)=\left(\begin{array}{cc}\frac{1}{4} \Omega^{-1} & \frac{1}{2} \\ -\frac{1}{2} & 1 \Omega\end{array}\right)$
b) $P_{R_{L}}=0 \mathrm{~W}$

Problem 2.10

For the association of quadripoles shown in Figure 2 we know that the circulation currents are zero ($I_{c}=0$)
a) Obtain a family of parameters to characterize the $R L C$ quadripole $\left(Q_{B}\right)$ on which the measurements shown in figure 1 have been done.
b) Obtain the equivalent impedance between the points C and D to the left $\left(Z_{S}\right)$ in the circuit of the figure 2

Figure 1

Figure 2
DATA: $\left(z_{Q_{A}}\right)=\left(\begin{array}{cc}2 \Omega & 2 \Omega \\ 2 \Omega & (2-2 j) \Omega\end{array}\right) ; Z_{g}=1 \Omega$

Result

a) $\left(g_{Q_{A}}\right)=\left(\begin{array}{ll}g_{11} & g_{12} \\ g_{21} & g_{22}\end{array}\right)=\left(\begin{array}{cc}\frac{1}{2} \Omega^{-1} & -1 \\ 1 & -2 j \Omega\end{array}\right) ;\left(g_{Q_{B}}\right)=\left(\begin{array}{ll}g_{11} & g_{12} \\ g_{21} & g_{22}\end{array}\right)=\left(\begin{array}{cc}\frac{3}{2} \Omega^{-1} & -2 \\ 2 & 2 \Omega\end{array}\right)$
b) $Z_{S}=(5-2 j) \Omega$

Problem 2.11

For the associated quadripoles Q_{A} and Q_{B} shown in figure 3 it is known that the circulation currents are zero and also that:

- The quadripole Q_{A} is $R L C$ and on measurements on this quadripole are shown in figure 1 (a) y 1 (b)

Figure 1

- The quadripole Q_{B} is symmetrical and measurements on this quadripole are shown in figure 2(a) y 2(b).

Figure 2

Optain:

a) A family of parameters that characterizes the association of the quadripoles Q_{A} y Q_{B} shown in figure 3.
b) Power delivered by the real generator $\left(e_{g}(t), R_{g}\right)$.
c) Temporal expresssion of the current $i_{x}(t)$.

Figure 3

DATA: $\quad e_{g}(t)=4 \cos (\omega t) \mathrm{V} \quad ; \quad R_{g}=\frac{1}{4} \Omega$
a) $\left(y_{Q_{T}}\right)=\left(y_{Q_{A}}\right)+\left(y_{Q_{B}}\right)=\left(\begin{array}{cc}2 \Omega^{-1} & -2 \Omega^{-1} \\ -2 \Omega^{-1} & 5 \Omega^{-1}\end{array}\right)+\left(\begin{array}{cc}2 \Omega^{-1} & -3 \Omega^{-1} \\ -3 \Omega^{-1} & 2 \Omega^{-1}\end{array}\right)=\left(\begin{array}{cc}4 \Omega^{-1} & -5 \Omega^{-1} \\ -5 \Omega^{-1} & 7 \Omega^{-1}\end{array}\right)$
b) $P_{E_{g}, R_{g}}=8 \mathrm{~W}$
c) $i_{x}(t)=10 \cos (\omega t) \mathrm{A}$

