PROBLEMS OF CHAPTER 3: Transfer of power. Image Parameters.

March 13, 2017

Problem 3.1

For the circuit in Figure 1, it is known that the real source $(e_g(t), R_g)$ delivers the maximum power to the network *LC*. If we know the measurements of the voltmeter and ammeter are $V_v = \sqrt{5} V_{ef}$ and $I_A = 2 A_{ef}$, respectively, obtain:

- a) The power absorbed by resistor R.
- b) Value of C.
- c) Equivalent impedance from the output of the LC network.

Figure 1

Data: $e_g(t) = 4 \cos(t) \text{ V}$; $R_g = 1 \Omega$; $R = 2 \Omega$

Result

- a) $P_R = 2$ W.
- b) C = 1 F.
- c) $Z_S = \frac{1-2j}{2} \Omega$

Problem 3.2

For the circuit in Figure 1 there is impedance matching in section CD. We know that the network 2 has a power transmission loss of $\alpha_T = 6$ dBs. Determine:

- a) Value of voltage V_{AB} .
- b) Power in impedance Z_L .

c) Transmission and insertion loss for the set of two networks.

Figure 1

Data: $E_g = (1+j) V$; $Z_g = (2-2j) \Omega$; $Z_L = (2+5j) \Omega$.

Result

a) $V_{AB} = j V.$ b) $P_{Z} = \frac{1}{2} W$

b)
$$P_{Z_L} = \frac{1}{32} V$$

c) $\alpha_{Total} = \alpha_T = 6 \text{ dBs}, \alpha_I = 4.08 \text{ dBs}$

Problem 3.3

In the circuit of Figure 1 we have impedance matching in section CD. Network 2 introduces a power transmission loss of $\alpha_T = 3$ dBs and the measurement of the voltmeter is of $\sqrt{2} V_{ef}$. Determine:

- a) Power of the impedance Z_L .
- b) Value of impedance Z_C .
- c) Transmission and insertion loss for the set of two networks.

Figure 1

Data: $E_g = -8j$ V ; $Z_g = (4 - 4j) \Omega$; $R = 1 \Omega$.

Result

- a) $P_{Z_L} = 1$ W.
- b) $Z_C = -j \Omega$.
- c) $\alpha_T = 3$ dBs, $\alpha_I = -1.94$ dBs

Problem 3.4

In the circuit of Figure 1, we have impedance matching in section AB, and the voltmeter measures a voltage of 5 V_{ef}. Obtain:

- a) Input impedance for network 2, Z_{CD} .
- b) Power absorbed in R_2 .
- c) The value of inductor L_2 .

Figure 1

Data: $e_g(t) = 4 \cos(t) V$; $R_1 = 2 \Omega$; $R_2 = 9 \Omega$; $L_1 = 2 H$; $C_1 = \frac{1}{2} F$.

Result

- a) $Z_{CD} = (1 j) \Omega.$
- b) $P_{R_2} = 1$ W.

c) $L_2 = H$

Problem 3.5

For the circuit shown in Figure 1(a), we know that the quadripoles have the internal structure shown in Figure 1(b). Compute:

- a) The image parameters $(Z_0 \ y \ \gamma)$ of the quadripoles.
- b) Value for a, in order to guarantee that the power of the source $i_g(t)$ is 0 W.
- c) Power for impedance Z_L .

Figure 1

$$Data: \quad i_g(t) = \frac{2}{\sqrt{3}} \sin(\omega t) A \quad ; \quad \omega L = 5 \Omega \quad ; \quad \frac{1}{\omega C} = 10 \Omega$$
$$e_g(t) = 20 \sin(\omega t + \frac{\pi}{3}) V \quad ; \quad Z_g = Z_L = 5\sqrt{3} \Omega$$

a) $Z_0 = 5\sqrt{3} \Omega; \ \gamma = j\frac{\pi}{3}$ b) a = 1c) $P_{Z_L} = \frac{10\sqrt{3}}{3} W$

Problem 3.6

For the circuit in Figure 1(a), networks Q_A and Q_B have the same impedance Z_0 . If quadripole Q_A has the internal structure shown in Figure 1(b), determine:

- a) Image parameters of quadripole Q_A .
- b) Power absorbed by the load.

Figure 1

 $\begin{array}{rll} Data: & e_g(t) = 24 \sin \left(\omega t \right) \ V & ; & Z_g = 12 \ \Omega \\ & & Q_A \ \left\{ \omega L = 5 \ \Omega \ ; \ \frac{1}{\omega C} = 1 \ \Omega \ \right\} & ; & Q_B \ \left\{ Z_0 = Z_0^A \ ; \ \gamma = \ln(2) \ \mathrm{Np} \ \right\} \end{array}$

Result

- a) $Z_{01} = 3 \Omega; \gamma_A = 1.9305 j$
- b) $P_{Z_L} = 1.5 W$

Problem 3.7

For the circuit shown in Figure 1(a) we know the image parameters of quadripole Q_A and the internal structure of two-port network Q_B , see Figure 1(b).

- a) Obtain the value of the impedance Z in order to guarantee that the source (E_g, Z_g) delivers the maximum power.
- b) Find the power absorbed by the impedance Z obtained in the previous section, as well as the time-domain expression of current $i_Z(t)$.

c) Justify why the insertion loss of quadripole Q_B is 0.

$$\begin{array}{rll} Data: & e_g(t) = 6 \, \sin \left(\omega t \right) \, V \\ & & Z_g = 6 \, \Omega & ; & Z_L = Z_{0B} \\ & & Q_A \, \left\{ Z_{0A} = 6 \, \Omega \ ; \ \gamma = \ln(2) \, \operatorname{Np} \right\} & ; & Q_B \, \left\{ \omega L = 5 \, \Omega \ ; \ \frac{1}{\omega C} = 1 \, \Omega \right\} \end{array}$$

Result

a) $Z = 3 \Omega$ b) $P_Z = \frac{3}{32} W$; $i_Z(t) = \frac{1}{4} \cdot \sin(\omega t) A$

Problem 3.8

For the association of quadripoles shown in Figure 1(a), the three networks Q are identical and their internal structure is shown in figure 1(b). If the load impedance Z_L is equal to the characteristic impedance of the networks, obtain:

- a) The image parameters of the quadripole Q.
- b) The time-domain expression of voltage $V_{CD}(t)$.
- c) The maximum number of quadripoles Q that we can connect in cascade, between the source (E_g, R_g) and the load Z_L in order to guarantee that the load receives a power $\geq 1 \ mW$.

Figure 1

Data:
$$e_g(t) = 75 \cos(\omega t) V$$
; $R = 6 \Omega$; $R_g = 2Z_0$

Result

- a) $Z_0 = 2\sqrt{3} \Omega; \gamma = 1.3170 \text{ Np}$
- b) $V_{CD} = 0.4809$
- c) n = 4

Problem 3.9

The quadripole shown in Figure 1(a), which is bilateral and symmetric, has the following parameters: $z_{11} = 8 \Omega$ and $y_{11} = \frac{1}{2} \Omega^{-1}$.

- a) Obtain the image parameters Z_0 and γ .
- b) Determine the power absorbed by the load Z_L , using the circuit shown in Figure 1(b), where the quadripoles have the same internal structure of the two-port networks shown in Figure 1(a).

Figure 1

 $Data: e_g(t) = 4\sin(\omega t) \text{ V}; \quad Z_g = Z_L = Z_0$

Result

a) $Z_0 = 4 \Omega, \gamma = \frac{\operatorname{Ln}(3)}{2} Np$ b) $P_2 = \frac{1}{18} W$

Problem 3.10

For the circuit shown in Figure 1 all the quadripoles are identical and symmetric. The measurements shown in Figure 2 have been done with these quadripoles.

- a) Compute the image parameters $(Z_0 \text{ and } \gamma)$ for the quadripole Q.
- b) Determine the value of a so as to guarantee that the source $(e_g(t), Z_g)$ delivers the maximum power.
- c) Obtain the power absorbed by the load Z_L and the time-domain expression of the current $i_L(t)$.
- d) Determine the power transmission and insertion loss introduced by the set of quadripoles and the transformer.

Figure 2

 $Data: \ e_g(t) = 16 \cdot \cos(\omega t) \ V. \ ; \ Z_g = 4Z_0 \ ; \ Z_L = Z_0.$

a)
$$\begin{cases} Z_0 = 2 \ \Omega \\ \gamma = Ln(2) - j\frac{\pi}{2} \end{cases}$$

b) $a = 2$
c) $P_{Z_L} = \frac{1}{16} W; \ i_L(t) = \frac{1}{4} \cos\left(\omega t + \frac{3\pi}{2}\right) A$
d) $\alpha_T = 2.08 \ Np; \ \alpha_I = 1.86 \ Np$

Problem 3.11

For the circuit shown in Figure 1 determine the power of the source i(t).

Figure 1

Data: $e_g(t) = 8 \cdot \sin(\omega t) V$; $i(t) = \cos(\omega t) A$; $Z_g = Z_L = 3 \Omega$ $Q_1 \equiv \begin{cases} Z_{0_1} = 3 \Omega \\ Th(\gamma_1) = \frac{3}{5} \end{cases}$; $Q_2 \equiv \begin{cases} Z_{0_2} = 5 \Omega \\ \gamma_2 = -j\frac{\pi}{3} \end{cases}$

$$P_I = 0.8260 \text{ W}$$

Problem 3.12

In the circuit of Figure 1 we know that each quadripole Q is RLC. We also know that its transmission parameters are: A = 3, $B = 8 \Omega$, $C = 1 \Omega^{-1}$, D = 3.

Figure 1

Data: $Z_L = 2\sqrt{2} \ \Omega$

- a) Justify if quadripole Q is bilateral and symmetric. If so, obtain its image parameters (Z_0 and γ).
- b) Find the ratio between the input power, P_1 , and the output power, P_2 , of the association given in Figure 1.
- c) Compute the ratio between the power absorbed by the load before and after one of the quaripoles is removed from the association shown in Figure 1.

Result

- a) Quadripole bilateral and symmetric. $\begin{cases} Z_0 = 2\sqrt{2} \ \Omega \\ \gamma = 1.763 \ \mathrm{Np} \end{cases}$
- b) $\frac{P_1}{P_2} = 39261.5$
- c) $\frac{P'_2}{P_2} = 33.99$

Problem 3.13

In the circuit shown in Figure 1, the three bilateral and symmetric quadripoles are characterized by their image parameters. They all have the same characteristic impedance Z_0 . Moreover, we know that $Z_g = Z_L = Z_0$.

- a) Compute the power absorbed by the load Z_L .
- b) Compute the power of the voltage sources e(t) and $e_g(t)$, and of the current source i(t).

Figure 1

$$Data: e_{g}(t) = 30 \sin \left(\omega t + \frac{\pi}{2}\right) V; \quad e(t) = 10 \sin \left(\omega t\right) V; \quad i(t) = 5 \sin \left(\omega t\right) A;$$
$$Q_{1} \begin{cases} Z_{0} = 5 \Omega \\ \gamma_{1} = j\frac{\pi}{2} \end{cases} \qquad Q_{2} \begin{cases} Z_{0} = 5 \Omega \\ \gamma_{2} = j\pi \end{cases} \qquad Q_{3} \begin{cases} Z_{0} = 5 \Omega \\ \gamma_{3} = ln(2) \text{ Np} \end{cases}$$

Result

a)
$$P_{Z_L} = \frac{5}{2} W$$

b) $P_{E_g} = 15 W$; $P_E = 35 W$; $P_I = -\frac{75}{2} W$

Problem 3.14

For the association of quadripoles shown in Figure 1, it is known that the two-port network Q_2 is bilateral, and that its output impedance with an open-circuit input is $Z_{2A} = \frac{1}{2} \Omega$. Moreover, the measurements shown in Figure 2 have been done.

- a) Determine a family of parameters to characterize the quadripole Q_2 .
- b) Find the value for resistor R in order to guarantee that the source delivers the maximum power.
- c) Determine the transmission loss of the network between the real source (E_g, Z_g) and the load (Z_L) .

Figure 1

Data:
$$Z_g = 35 \Omega; Z_L = \frac{1}{2} \Omega; a = 2.$$

a) $h_{Q_2} = \begin{pmatrix} 11 \ \Omega & 2 \\ -2 & 2 \ \Omega^{-1} \end{pmatrix}$ b) $R = 5 \ \Omega$. c) $\alpha_T = 1.4311 \ \text{Np} = 12.43 \ \text{dB}.$

Problem 3.15

Given the association of quaripoles in Figure 1, determine:

- a) The image parameters of quadripoles Q_1 and Q_2 .
- b) The insertion loss produced by quaripole Q_2 and the transmission loss of quadripole Q_1 .

Figure 1

 $\begin{array}{rll} Data: & E_g = 100 \ \mathrm{V} & ; & Z_g = (6-2j) \ \Omega & ; & Z_L = Z_0 & ; & I_1 = (4+3j) \ \mathrm{A} & ; & V_2 = (7-j) \ \mathrm{V} \\ & I_3 = -\frac{4+3j}{10} \ \mathrm{A} \end{array}$

Result

- a) $Z_0 = (10 10j) \Omega$, $\gamma_1 = \text{Ln}(10) \text{Np}$, $\gamma_2 = j\pi \text{ rad}$.
- b) $\alpha_{I_2} = \alpha_2 = 0$ Np, $\alpha_{T_1} = \alpha_1 = \text{Ln}(10)$ Np

Problem 3.16

Quaripoles Q_A and Q_B have been connected as it is shown in Figure 1. Of quaripole Q_A we know the value of $Z_{0A} = \frac{1-j}{3}\Omega$. Of quaripole Q_B we know that it is bilateral and symmetric, and we also know its transmission parameters A and B.

- a) Compute the image parameters of quadripole Q_B .
- b) Determine the time-domain expression of the current $i_L(t)$, if the load Z_L coincides with the characteristic impedance of the quadripole Q_B .
- c) Compute the transmission and insertion loss of the set of two quadripoles Q_B connected in cascade.

Figure 1

Data:

$$e_g(t) = 2\cos(\omega t) V \quad ; \quad Z_g = \frac{1+j}{4}$$
$$Q_B \begin{cases} A = \frac{1}{\sqrt{2}} \\ B = \frac{1+j}{\sqrt{2}} \Omega \end{cases}$$

Result

a) $Z_{0B} = (1 - j) \Omega \text{ y } \gamma_B = j\frac{\pi}{4}.$ b) $i_L(t) = \cos\left(\omega t - \frac{\pi}{2}\right) \text{ A.}$ c) $\alpha_T = \alpha_I = 2\alpha_B = 0 \text{ Np }.$

Problem 3.17

In the circuit of Figure 1, quadripole Q_A is bilateral and symmetric, with transmission parameters $B = 4 \ \Omega$ and D = 3, and the source $(e_g(t), R_g)$ is delivering the maximum power. With these

conditions, we know that $i_x(t) = \cos(\omega t - \pi/4) A$. Determine:

- a) The value of the characteristic impedance of quadripole Q_B , Z_{0B} .
- b) The value of γ_B for quadripole Q_B .
- c) The time-domain expression of the voltage at the output of quadripole Q_A , v(t).
- d) Transmission and insertion loss for the quadripole Q_B . Justify your answer.

Figure 1

Data: $e_g(t) = 12 \cos(\omega t)$ V ; $R_g = 3 \Omega$; a = 2 ; $Z_L = Z_{0B}$

Result

1. $Z_{0B} = \frac{3}{2} \Omega$ 2. $\gamma_B = \ln(2) + j\frac{\pi}{4}$ 3. $v(t) = \cos(\omega t) V$ 4. $\alpha_T = \alpha_I = \Re e\{\gamma_B\} = \alpha_B = \ln(2) \text{ Np}$