PROBLEMS OF CHAPTER 3: Transfer of power. Image Parameters.

March 13, 2017

Problem 3.1

For the circuit in Figure $\mathbb{1}$ it is known that the real source $\left(e_{g}(t), R_{g}\right)$ delivers the maximum power to the network $L C$. If we know the measurements of the voltmeter and ammeter are $V_{v}=\sqrt{5} \mathrm{~V}_{\text {ef }}$ and $I_{A}=2 \mathrm{~A}_{e f}$, respectively, obtain:
a) The power absorbed by resistor R.
b) Value of C.
c) Equivalent impedance from the output of the $L C$ network.

Figure 1
Data: $\quad e_{g}(t)=4 \cos (t) \mathrm{V} ; \quad R_{g}=1 \Omega ; R=2 \Omega$

Result

a) $P_{R}=2 \mathrm{~W}$.
b) $C=1 \mathrm{~F}$.
c) $Z_{S}=\frac{1-2 j}{2} \Omega$

Problem 3.2

For the circuit in Figure 1 there is impedance matching in section $C D$. We know that the network 2 has a power transmission loss of $\alpha_{T}=6 \mathrm{dBs}$. Determine:
a) Value of voltage $V_{A B}$.
b) Power in impedance Z_{L}.
c) Transmission and insertion loss for the set of two networks.

Figure 1

$$
\text { Data: } \quad E_{g}=(1+j) \mathrm{V} \quad ; \quad Z_{g}=(2-2 j) \Omega \quad ; \quad Z_{L}=(2+5 j) \Omega .
$$

Result

a) $V_{A B}=j \mathrm{~V}$.
b) $P_{Z_{L}}=\frac{1}{32} \mathrm{~W}$
c) $\alpha_{\text {Total }}=\alpha_{T}=6 \mathrm{dBs}, \alpha_{I}=4.08 \mathrm{dBs}$

Problem 3.3

In the circuit of Figure 1 we have impedance matching in section $C D$. Network 2 introduces a power transmission loss of $\alpha_{T}=3 \mathrm{dBs}$ and the measurement of the voltmeter is of $\sqrt{2} \mathrm{~V}_{e f}$. Determine:
a) Power of the impedance Z_{L}.
b) Value of impedance Z_{C}.
c) Transmission and insertion loss for the set of two networks.

Figure 1

$$
\text { Data: } \quad E_{g}=-8 j \mathrm{~V} \quad ; \quad Z_{g}=(4-4 j) \Omega ; R=1 \Omega .
$$

Result

a) $P_{Z_{L}}=1 \mathrm{~W}$.
b) $Z_{C}=-j \Omega$.
c) $\alpha_{T}=3 \mathrm{dBs}, \alpha_{I}=-1.94 \mathrm{dBs}$

Problem 3.4

In the circuit of Figure [we have impedance matching in section $A B$, and the voltmeter measures a voltage of $5 \mathrm{~V}_{\text {ef }}$. Obtain:
a) Input impedance for network $2, Z_{C D}$.
b) Power absorbed in R_{2}.
c) The value of inductor L_{2}.

Figure 1
Data: $\quad e_{g}(t)=4 \cos (t) \mathrm{V} \quad ; \quad R_{1}=2 \Omega \quad ; \quad R_{2}=9 \Omega \quad ; \quad L_{1}=2 \mathrm{H} \quad ; \quad C_{1}=\frac{1}{2} \mathrm{~F}$.

Result

a) $Z_{C D}=(1-j) \Omega$.
b) $P_{R_{2}}=1 \mathrm{~W}$.
c) $L_{2}=\mathrm{H}$

Problem 3.5

For the circuit shown in Figure $\mathbb{T}(\mathrm{a})$, we know that the quadripoles have the internal structure shown in Figure [(b). Compute:
a) The image parameters $\left(\begin{array}{lll}Z_{0} & y & \gamma\end{array}\right)$ of the quadripoles.
b) Value for a, in order to guarantee that the power of the source $i_{g}(t)$ is 0 W .
c) Power for impedance Z_{L}.

Figure 1

$$
\begin{array}{rccc}
\text { Data }: & i_{g}(t)=\frac{2}{\sqrt{3}} \sin (\omega t) A & ; \quad \omega L=5 \Omega & ; \quad \frac{1}{\omega C}=10 \Omega \\
& e_{g}(t)=20 \sin \left(\omega t+\frac{\pi}{3}\right) V & ; \quad Z_{g}=Z_{L}=5 \sqrt{3} \Omega &
\end{array}
$$

Result

a) $Z_{0}=5 \sqrt{3} \Omega ; \gamma=j \frac{\pi}{3}$
b) $a=1$
c) $P_{Z_{L}}=\frac{10 \sqrt{3}}{3} \mathrm{~W}$

Problem 3.6

For the circuit in Figure $\mathbb{1}$ (a), networks Q_{A} and Q_{B} have the same impedance Z_{0}. If quadripole Q_{A} has the internal structure shown in Figure (b), determine:
a) Image parameters of quadripole Q_{A}.
b) Power absorbed by the load.

Figure 1

$$
\begin{array}{rll}
\text { Data }: & e_{g}(t)=24 \sin (\omega t) V & ; Z_{g}=12 \Omega \\
& Q_{A}\left\{\omega L=5 \Omega ; \frac{1}{\omega C}=1 \Omega\right\} & ; Q_{B}\left\{Z_{0}=Z_{0}^{A} ; \gamma=\ln (2) N p\right\}
\end{array}
$$

Result

a) $Z_{01}=3 \Omega ; \gamma_{A}=1.9305 j$
b) $P_{Z_{L}}=1.5 \mathrm{~W}$

Problem 3.7

For the circuit shown in Figure 1 (a) we know the image parameters of quadripole Q_{A} and the internal structure of two-port network Q_{B}, see Figure (b).
a) Obtain the value of the impedance Z in order to guarantee that the source $\left(E_{g}, Z_{g}\right)$ delivers the maximum power.
b) Find the power absorbed by the impedance Z obtained in the previous section, as well as the time-domain expression of current $i_{Z}(t)$.
c) Justify why the insertion loss of quadripole Q_{B} is 0 .

Figure 1

$$
\begin{array}{rll}
\text { Data }: & e_{g}(t)=6 \sin (\omega t) V & \\
& Z_{g}=6 \Omega & Z_{L}=Z_{0 B} \\
& Q_{A}\left\{Z_{0 A}=6 \Omega ; \gamma=\ln (2) \mathrm{Np}\right\} & ; Q_{B}\left\{\omega L=5 \Omega ; \frac{1}{\omega C}=1 \Omega\right\}
\end{array}
$$

Result

a) $Z=3 \Omega$
b) $P_{Z}=\frac{3}{32} W ; i_{Z}(t)=\frac{1}{4} \cdot \sin (\omega t) A$

Problem 3.8

For the association of quadripoles shown in Figure (1), the three networks Q are identical and their internal structure is shown in figure (b). If the load impedance Z_{L} is equal to the characteristic impedance of the networks, obtain:
a) The image parameters of the quadripole Q.
b) The time-domain expression of voltage $V_{C D}(t)$.
c) The maximum number of quadripoles Q that we can connect in cascade, between the source $\left(E_{g}, R_{g}\right)$ and the load Z_{L} in order to guarantee that the load receives a power $\geq 1 \mathrm{~mW}$.

Figure 1
Data: $e_{g}(t)=75 \cos (\omega t) \mathrm{V} ; R=6 \Omega ; \quad R_{g}=2 Z_{0}$

Result

a) $Z_{0}=2 \sqrt{3} \Omega ; \gamma=1.3170 \mathrm{~Np}$
b) $V_{C D}=0.4809$
c) $n=4$

Problem 3.9

The quadripole shown in Figure【(a), which is bilateral and symmetric, has the following parameters: $z_{11}=8 \Omega$ and $y_{11}=\frac{1}{2} \Omega^{-1}$.
a) Obtain the image parameters Z_{0} and γ.
b) Determine the power absorbed by the load Z_{L}, using the circuit shown in Figure I $_{\text {(b) }}$), where the quadripoles have the same internal structure of the two-port networks shown in Figure 1(a).

Figure 1
Data: $\quad e_{g}(t)=4 \sin (\omega t) \mathrm{V} ; \quad Z_{g}=Z_{L}=Z_{0}$

Result

a) $Z_{0}=4 \Omega, \gamma=\frac{\operatorname{Ln}(3)}{2} N p$
b) $P_{2}=\frac{1}{18} \mathrm{~W}$

Problem 3.10

For the circuit shown in Figure \rrbracket all the quadripoles are identical and symmetric. The measurements shown in Figure 2 have been done with these quadripoles.
a) Compute the image parameters (Z_{0} and γ) for the quadripole Q.
b) Determine the value of a so as to guarantee that the source $\left(e_{g}(t), Z_{g}\right)$ delivers the maximum power.
c) Obtain the power absorbed by the load Z_{L} and the time-domain expression of the current $i_{L}(t)$.
d) Determine the power transmission and insertion loss introduced by the set of quadripoles and the transformer.

Figure 1

Figure 2

$$
\text { Data : } \quad e_{g}(t)=16 \cdot \cos (\omega t) V . \quad ; \quad Z_{g}=4 Z_{0} \quad ; \quad Z_{L}=Z_{0} .
$$

Result

a) $\left\{\begin{array}{l}Z_{0}=2 \Omega \\ \gamma=\operatorname{Ln}(2)-j \frac{\pi}{2}\end{array}\right.$
b) $a=2$
c) $P_{Z_{L}}=\frac{1}{16} W ; i_{L}(t)=\frac{1}{4} \cos \left(\omega t+\frac{3 \pi}{2}\right) A$
d) $\alpha_{T}=2.08 \mathrm{~Np} ; \alpha_{I}=1.86 \mathrm{~Np}$

Problem 3.11

For the circuit shown in Figure $\mathbb{1}$ determine the power of the source $i(t)$.

Figure 1

Data:

$\begin{array}{ll}e_{g}(t)=8 \cdot \sin (\omega t) V & ;\end{array} \quad i(t)=\cos (\omega t) A ; \quad Z_{g}=Z_{L}=3 \Omega$,

Result

$$
P_{I}=0.8260 \mathrm{~W}
$$

Problem 3.12

In the circuit of Figure 1 we know that each quadripole Q is $R L C$. We also know that its transmission parameters are: $A=3, \quad B=8 \Omega, \quad C=1 \Omega^{-1}, \quad D=3$.

Figure 1
Data: $Z_{L}=2 \sqrt{2} \Omega$
a) Justify if quadripole Q is bilateral and symmetric. If so, obtain its image parameters (Z_{0} and γ).
b) Find the ratio between the input power, P_{1}, and the output power, P_{2}, of the association given in Figure 1
c) Compute the ratio between the power absorbed by the load before and after one of the quaripoles is removed from the association shown in Figure 1 .

Result

a) Quadripole bilateral and symmetric. $\left\{\begin{array}{l}Z_{0}=2 \sqrt{2} \Omega \\ \gamma=1.763 \mathrm{~Np}\end{array}\right.$
b) $\frac{P_{1}}{P_{2}}=39261.5$
c) $\frac{P_{2}^{\prime}}{P_{2}}=33.99$

Problem 3.13

In the circuit shown in Figure 1 the three bilateral and symmetric quadripoles are characterized by their image parameters. They all have the same characteristic impedance Z_{0}. Moreover, we know that $Z_{g}=Z_{L}=Z_{0}$.
a) Compute the power absorbed by the load Z_{L}.
b) Compute the power of the voltage sources $e(t)$ and $e_{g}(t)$, and of the current source $i(t)$.

Figure 1

$$
\begin{aligned}
& \text { Data: } \quad e_{g}(t)=30 \sin \left(\omega t+\frac{\pi}{2}\right) V ; \quad e(t)=10 \sin (\omega t) V ; \quad i(t)=5 \sin (\omega t) A ; \\
& Q_{1}\left\{\begin{array} { l }
{ Z _ { 0 } = 5 \Omega } \\
{ \gamma _ { 1 } = j \frac { \pi } { 2 } }
\end{array} \quad Q _ { 2 } \left\{\begin{array} { l }
{ Z _ { 0 } = 5 \Omega } \\
{ \gamma _ { 2 } = j \pi }
\end{array} \quad Q _ { 3 } \left\{\begin{array}{l}
Z_{0}=5 \Omega \\
\gamma_{3}=\ln (2) \mathrm{Np}
\end{array}\right.\right.\right.
\end{aligned}
$$

Result

a) $P_{Z_{L}}=\frac{5}{2} W$
b) $P_{E_{g}}=15 \mathrm{~W} ; P_{E}=35 \mathrm{~W} ; P_{I}=-\frac{75}{2} \mathrm{~W}$

Problem 3.14

For the association of quadripoles shown in Figure 1 it is known that the two-port network Q_{2} is bilateral, and that its output impedance with an open-circuit input is $Z_{2 A}=\frac{1}{2} \Omega$. Moreover, the measurements shown in Figure 2 have been done.
a) Determine a family of parameters to characterize the quadripole Q_{2}.
b) Find the value for resistor R in order to guarantee that the source delivers the maximum power.
c) Determine the transmission loss of the network between the real source $\left(E_{g}, Z_{g}\right)$ and the load $\left(Z_{L}\right)$.

Figure 1

Figure 2
Data: $Z_{g}=35 \Omega ; Z_{L}=\frac{1}{2} \Omega ; a=2$.

Result

a) $h_{Q_{2}}=\left(\begin{array}{cc}11 \Omega & 2 \\ -2 & 2 \Omega^{-1}\end{array}\right)$
b) $R=5 \Omega$.
c) $\alpha_{T}=1.4311 \mathrm{~Np}=12.43 \mathrm{~dB}$.

Problem 3.15

Given the association of quaripoles in Figure determine:
a) The image parameters of quadripoles Q_{1} and Q_{2}.
b) The insertion loss produced by quaripole Q_{2} and the transmission loss of quadripole Q_{1}.

Figure 1
Data: $\quad E_{g}=100 \mathrm{~V} \quad ; \quad Z_{g}=(6-2 j) \Omega \quad ; \quad Z_{L}=Z_{0} \quad ; \quad I_{1}=(4+3 j) \mathrm{A} \quad ; \quad V_{2}=(7-j) \mathrm{V}$ $I_{3}=-\frac{4+3 j}{10} \mathrm{~A}$

Result

a) $Z_{0}=(10-10 j) \Omega, \gamma_{1}=\operatorname{Ln}(10) \mathrm{Np}, \gamma_{2}=j \pi \mathrm{rad}$.
b) $\alpha_{I_{2}}=\alpha_{2}=0 \mathrm{~Np}, \alpha_{T_{1}}=\alpha_{1}=\operatorname{Ln}(10) \mathrm{Np}$

Problem 3.16

Quaripoles Q_{A} and Q_{B} have been connected as it is shown in Figure 1. Of quaripole Q_{A} we know the value of $Z_{0 A}=\frac{1-j}{3} \Omega$. Of quaripole Q_{B} we know that it is bilateral and symmetric, and we also know its transmission parameters A and B .
a) Compute the image parameters of quadripole Q_{B}.
b) Determine the time-domain expression of the current $i_{L}(t)$, if the load Z_{L} coincides with the characteristic impedance of the quadripole Q_{B}.
c) Compute the transmission and insertion loss of the set of two quadripoles Q_{B} connected in cascade.

Figure 1

Data:

$$
\begin{gathered}
e_{g}(t)=2 \cos (\omega t) V \quad ; \quad Z_{g}=\frac{1+j}{4} \\
Q_{B}\left\{\begin{array}{l}
A=\frac{1}{\sqrt{2}} \\
B=\frac{1+j}{\sqrt{2}} \Omega
\end{array}\right.
\end{gathered}
$$

Result

a) $Z_{0 B}=(1-j) \Omega$ y $\gamma_{B}=j \frac{\pi}{4}$.
b) $i_{L}(t)=\cos \left(\omega t-\frac{\pi}{2}\right) \mathrm{A}$.
c) $\alpha_{T}=\alpha_{I}=2 \alpha_{B}=0 \mathrm{~Np}$.

Problem 3.17

In the circuit of Figure 1 quadripole Q_{A} is bilateral and symmetric, with transmission parameters $B=4 \Omega$ and $D=3$, and the source $\left(e_{g}(t), R_{g}\right)$ is delivering the maximum power. With these
conditions, we know that $i_{x}(t)=\cos (\omega t-\pi / 4) A$. Determine:
a) The valur of the characteristic impedance of quadripole $Q_{B}, Z_{0 B}$.
b) The value of γ_{B} for quadripole Q_{B}.
c) The time-domain expresion of the voltage at the output of quadripole $Q_{A}, v(t)$.
d) Transmisison and insertion loss for the quadripole Q_{B}. Justify your answer.

Figure 1

Data: $\quad e_{g}(t)=12 \cos (\omega t) \mathrm{V} ; \quad R_{g}=3 \Omega \quad ; \quad a=2 ; \quad Z_{L}=Z_{0 B}$

Result

1. $Z_{0 B}=\frac{3}{2} \Omega$
2. $\gamma_{B}=\ln (2)+j \frac{\pi}{4}$
3. $v(t)=\cos (\omega t) \mathrm{V}$
4. $\alpha_{T}=\alpha_{I}=\Re e\left\{\gamma_{B}\right\}=\alpha_{B}=\ln (2) \mathrm{Np}$
