PROBLEMS OF CHAPTER 4: INTRODUCTION TO PASSIVE FILTERS.

April 4, 2017

Problem 4.1

For the circuit shown in Figure 1(a) we want to design a filter with the zero-pole diagram shown in Figure 1 (b).

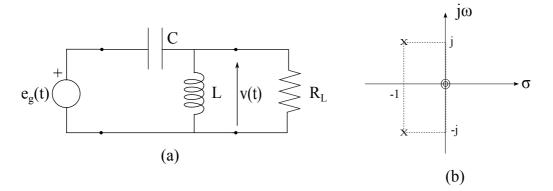


Figure 1

- a) Justify the type of filter proposed.
- b) Obtain the literal expression of the transfer function of the circuit, which is defined as $H(s) = \frac{V(s)}{E_g(s)}$, as a function of the components of the circuit.
- c) Obtain the values for L and C in order to build a circuit that satisfies the zero-pole diagram given. Consider $R_L = 1 \Omega$.

Result

a) High-pass filter.

b)
$$H(s) = \frac{s^2}{s^2 + \frac{1}{CR_L}s + \frac{1}{LC}}$$

c) $K = 1, C = \frac{1}{2}F, L = 1H$

Problem 4.2

Given the circuit of Figure 1:

- a) Obtain the literal expression of the transfer function of the circuit, as a function of the components of the circuit, defined as $H(s) = \frac{V_2(s)}{E_a(s)}$.
- b) Plot the zero-pole diagram, and approximately represent the modulus of the frequency response of the filter. Justify the type of filter obtained.
- c) Compute $v_2(t)$ considering that $e_g(t) = 3 \cdot \text{sen}(4t) V$.

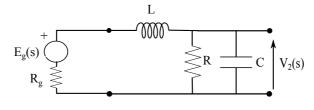


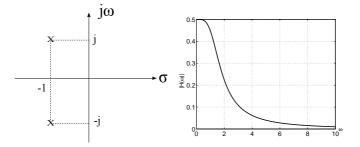
Figure 1

 $\label{eq:def-Data:} \text{Data:} \ R=R_g=1\ \Omega \quad ; \quad L=1H \quad ; \quad C=1F.$

Result

a)
$$H(s) = \frac{R}{R_g + R} \cdot \frac{\frac{R_g + R}{LCR}}{s^2 + \left(\frac{R_g}{L} + \frac{1}{RC}\right)s + \frac{R_g + R}{LCR}}$$

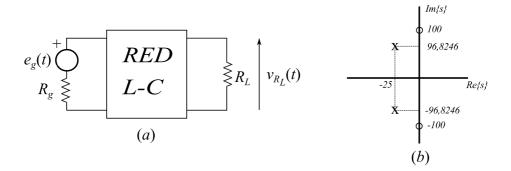
b) Low-pass filter.



c) $v_2(t) = 0.186 \operatorname{sen}(4t - 2.6224) \operatorname{V}$

Problem 4.3

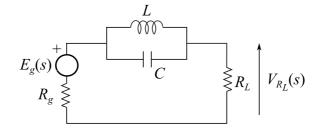
For the circuit in Figure 1(a), it transfer function $H(s) = \frac{V_{R_L}(s)}{E_g(s)}$ has the zero-pole diagram shown in Figure 1(b). Moreover, we know that $H(s)|_{s=0} = \frac{1}{2}$ and that $R_L = 1 \Omega$.



- a) Justify the type of filter provided.
- b) Computer the parameters of the filter:
 - H_0 and cur frequency.
 - Central frequency and bandwidth.
- c) Compute the value of R_g and a possible L-C network specifying the value of all the components..

Result

- a) Bad-stop filter.
- b) $H_0 = \frac{1}{2}, \, \omega_0 = 100 \text{ rad/s}, \, B = 50 \, rad/s, \, Q = \frac{\omega_0}{B} = 2, \, \omega_{C_i} = 78.078 \text{ rad/s}, \, \omega_{C_s} = 128.078 \text{ rad/s}$
- c) $R_g = 1 \Omega, C = 10 \text{ mF}, L = 10 \text{ mH}$

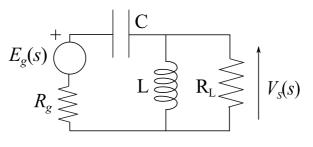


Problem 4.4

For the circuit in Figure 1 we can consider that the initial conditions are zero. Determine:

a) The transfer function $H(s) = \frac{V_S(s)}{E_g(s)}$.

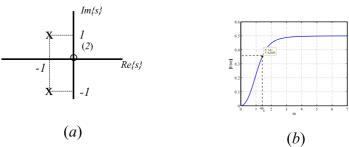
- b) Justify the type of filter provided, as well as its main characteristics $(H_0, \text{ cut frequency}, \dots)$.
- c) Draw the zero-pole plot and represent the modulus of the frequency response of the filter..



Data:
$$R_g = R_L = 1 \Omega, \ L = \frac{1}{2} \text{ H}, \ C = \frac{1}{2} \text{ F}$$

Result

a) $H(s) = \frac{1}{2} \cdot \frac{s^2}{s^2 + 2s + 2}$ b) High-pass filter, $H_0 = \frac{1}{2}$, $\omega_c = \sqrt{2}$ rad/s. c)



Problem 4.5

Given the circuit of Figure 1:

- a) Obtain the literal expression of the transfer function $H(s) = \frac{V_S(s)}{E_g(s)}$ as a function of R_L , C and L.
- b) Determine the value of C in order to get the minimum value of the modulus of the frequency response for $\omega_1 = 100$ rad/s.
- c) Draw the zero-plot diagram and plot the modulus of the frequency response. Justify the type of filter obtained.

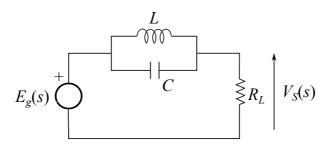


Figure 1

Data: $R_L = 2 \Omega; \quad L = 10 \text{ mH}$

Result

a)
$$H(s) = \frac{s^2 + \frac{1}{LC}}{s^2 + \frac{1}{R_L C}s + \frac{1}{LC}}$$

b) C = 10 mF

c) Stop-band filter.

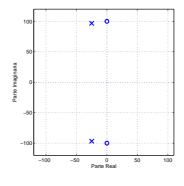


Figure 2

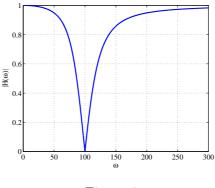


Figure 3

Problem 4.6

For the circuit in Figure 1:

- a) Obtain the literal expression of the transfer function $H(s) = \frac{V_S(s)}{E_g(s)}$. Justify the type of filter provided.
- b) Obtain the value of R_L in order to get a bandwidth of B = 1 Krad/s.
- c) Plot the zero-pole diagram, and draw the modulus of the frequency response.

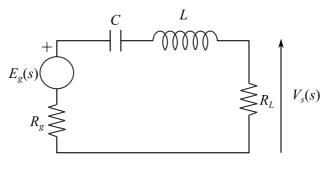


Figure 1

Data: $R_g = 50 \ \Omega$; L = 100 mH; C = 100 nF

Result

- a) Band-pass filter. $H(s) = \frac{\frac{R_L}{L}s}{s^2 + \frac{R_g + R_L}{L}s + \frac{1}{LC}}$
- b) $R_L = 50 \ \Omega$
- c) Zero-pole plot $|H(\omega)|$:

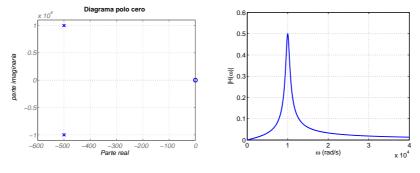


Figure 2

Problem 4.7

Given the circuit of Figure 1,

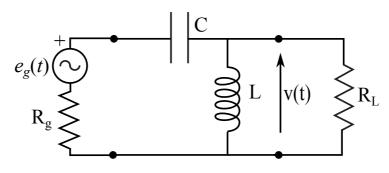


Figure 1

- a) Obtain the literal expression of the transfer function $H(s) = \frac{V(s)}{E_g(s)}$. Compare this transfer function with the general form of transfer functions for second-order filters $H(s) = \frac{a_2s^2 + a_1s + a_0}{s^2 + b_1s + b_0}$ and determine a_2, a_1, a_0, b_1, b_0 .
- b) Justify the type of filter provided considering the modulus of its frequency response.
- c) If $e_g(t) = 8 + 3 \cdot \cos(20t)V$, determine v(t).

Data:

$$R_q = R_L = 1\,\Omega; \qquad C = 10mF; \qquad L = 10mH$$

Result

a)
$$H(s) = \frac{V(s)}{E_g(s)} = \frac{R_L}{R_g + R_L} \cdot \frac{s^2}{s^2 + \frac{R_L}{R_g + R_L} \cdot \left(\frac{R_g}{L} + \frac{1}{R_L C}\right)s + \frac{R_L}{R_g + R_L} \cdot \frac{1}{LC}}$$

b) High-pass filter.

c) $v(t) = 0.12 \cdot \cos(20t + 2.7315)$ V

Problem 4.8

Given the circuit of Figure 1,

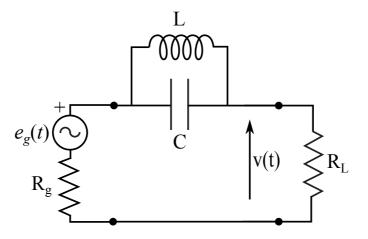


Figure 1

- a) Obtain the literal expression of the transfer function $H(s) = \frac{V(s)}{E_g(s)}$. Compare this transfer function with the general form of transfer functions for second-order filters $H(s) = \frac{a_2s^2 + a_1s + a_0}{s^2 + b_1s + b_0}$ and determine a_2, a_1, a_0, b_1, b_0 .
- b) Justify the type of filter provided considering the modulus of its frequency response.
- c) Compute the value of C in order to eliminate the frequency $\omega = 100 \ rad/s$.
- d) If $e_g(t) = 8 \cdot \sin(100t) + 3 \cdot \cos(20t)V$, determine v(t).

Data:

Result

a)

$$H(s) = \frac{V(s)}{E_g(s)} = \frac{\frac{R_L}{R_g + R_L} \cdot \left(s^2 + \frac{1}{LC}\right)}{s^2 + \frac{1}{(R_g + R_L)C}s + \frac{1}{LC}}$$

$$\begin{cases} a_2 = \frac{R_L}{R_g + R_L} \\ a_1 = 0 \\ a_0 = \frac{R_L}{R_g + R_L} \cdot \frac{1}{LC} \\ b_1 = \frac{1}{(R_g + R_L)C} \\ b_0 = \frac{1}{LC} \end{cases}$$

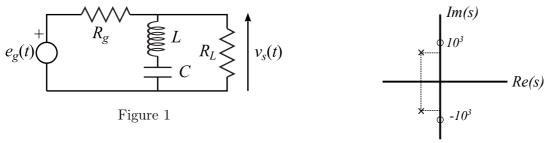
- b) Band-stop filter.
- c) C = 10 mF.
- d) $v(t) = 1.498 \cdot \cos(20t 0.052)$ V

Problem 4.9

For the circuit in Figure 1, determine:

- a) The literal expression of the transfer function $H(s) = \frac{V_s(s)}{E_q(s)}$.
- b) Values of L and C to get a zero-pole plot of H(s) like the one shown in Figure 2, considering a bandwidth of $B = 10^3$ rad/s.

c) $v_s(t)$ when the signal provided by the source is $e_g(t) = 4 + 3 \cdot \operatorname{sen}\left(10^3 t + \frac{\pi}{4}\right)$



Data: $R_g=R_L=1~\Omega$

Figure 2

Result

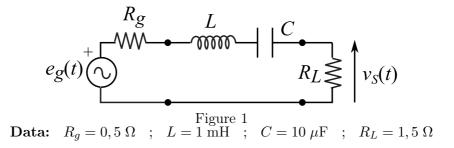
a)
$$H(s) = \frac{V(s)}{E_g(s)} = \frac{R_L}{R_L + R_g} \cdot \frac{s^2 + \frac{1}{LC}}{s^2 + \frac{R_g R_L}{(R_L + R_g)L} \cdot s + \frac{1}{LC}}$$

b) $L = \frac{1}{2}$ mH, $C = 2$ mF.
c) $v_s(t) = 2$ V

Problem 4.10

For the circuit in Figure 1:

- a) Obtain the literal expression of the transfer function $H(s) = \frac{V_s(s)}{E_g(s)}$ and its zero-pole plot.
- b) Represent the modulus of the frequency response of the filter, indicating the most representative values (maximum value and its frequency, bandwidth). Justify the type of filter provided.
- c) Obtain the signal $v_s(t)$ when $e_g(t) = 3 \cdot \cos(10^4 t) + 3 \cdot \sin(2 \cdot 10^4 t) V$.



Result

a)
$$H(s) = \frac{R_L}{R_g + R_L} \cdot \frac{\frac{R_g + R_L}{L}s}{s^2 + \frac{R_g + R_L}{L}s + \frac{1}{LC}}$$

 $s_{p_{1,2}} = \left(-1 \pm j\sqrt{99}\right) \cdot 10^3 \quad ; \quad s_{C_1} = 0 \quad ; \quad s_{C_2} \to \infty$

b) Pass-badn filter. $\omega_0 = 10^4 \text{rad/s}, \ H(\omega = 10^4) = \frac{3}{4}, \ B = 2 \cdot 10^3 \text{ rad/s}.$ c) $v_s(t) = \frac{9}{4} \cdot \cos(10^4 t) + \frac{9}{2\sqrt{229}} \cdot \sin(2 \cdot 10^4 t - 1.4382) \text{ V}$