UNIVERSIDAD DE ALCALÁ	Escuela Politécnica Superior Departamento de Teoría de la Señal y Comunicaciones Grados TIC
	Subject: Circuit Analysis - P.E.I. 1
	Course: 1st. Group: E \| Grupo Pequeño: -
	Surnames:
	Name:
	D.N.I.:
	Date: 1 - March - 2017

Instructions

- Fill in all the data required in the first page.

- The exam consists on 3 problems. Check that you have all of them.
- The duration of the exam is 1 hours 30 minutes.
- Books or notes are not allowed.
- Read carefully each problem before starting to answer.
- It is compulsory to write your name on each sheet. Any sheet without a name will be immediately removed.
- Start a new page for each problem. Before delivering the exam sort the pages.
- SWITCH OFF AND KEEP AWAY THE MOBILE PHONE.
- The grading of the exam will take into account the following aspects:

1. Clean and ordered responses.
2. Explanation and reasoning in accordance to the studied theory.
3. Explanations of each performed step in a resolution.
4. Simplicity and efficiency of the adopted solution.
5. The obtained results.

PROBLEM 1 (2.5 points)

Perform the association between the circuits shown in figure 1 and the respective transient responses of the voltage $v_{A B}(t)$ shown in figure 2. REASON why do you do these associations.

Figura 1

Figura 2

PROBLEM 2 (2.5 points)

In the circuit of the figure 1, the switcher is in position (1) since $t=-\infty$. At $t=0 \mathrm{~s}$, it switches to position (2) staying in this position for the rest of the time. It is known that the circuit is a $R C$-circuit made of only one R and one C, and that the voltage at the circuits terminals for $t>0$ is:

$$
v(t)=5\left(1-e^{-\frac{t}{2}}\right)
$$

Determine the internal structure of the $R C$-circuit and the values of their elements.

Figura 1
DATA:

$$
E_{g}=10 \mathrm{~V} ; R_{g}=5 \Omega
$$

PROBLEM 3 (5 points)

In the circuit of the figure 1, the switcher is in position (1) since $t=-\infty$. At $t=0 \mathrm{~s}$, it switches to position (2) staying in this position for the rest of the time. Calculate:
a) Initial conditions at the switching time.
b) Obtain the time evolution of the current $i_{L}(t)$ for $t>0 \mathrm{~s}$.
c) Calculate the value of \mathbf{R} so that the circuit has a critical transient response.

Figura 1
DATA:

$$
E_{g}=4 \mathrm{~V} \quad ; \quad R_{g}=R=2 \Omega ; L=2 \mathrm{H} \quad ; \quad C=\frac{1}{8} \mathrm{~F}
$$

