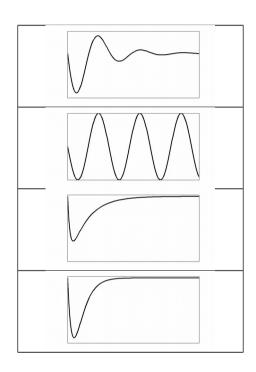
Connect the following boxes to the corresponded type of solution for a transient response of a 2nd order circuit with characteristic polynomial equation: $s^2 + a_1S + a_0 = 0$ and damping ratio ξ


	_		_	
Under- damped		0<ξ<1		$\mathbf{s}_1 = \mathbf{j} a_0 = -\mathbf{s}_2$
Undamped		ξ>1		s ₁ =s ₂ *
Over-damped		ξ=0		$s_1 = s_2$
Critically damped		ξ=1		$s_1 \neq s_2$, s_1 and $s_2 \in \Re$

$$A\sin(\sqrt{a_0}t + \varphi)$$

$$A_1 + A_2 t \exp(s_1 t)$$

$$A \exp(\operatorname{Re}[s_1]t) \sin(\operatorname{Im}[s_1]t + \varphi)$$

$$A_1 \exp(s_1 t) + A_2 \exp(s_2 t)$$

(A and ϕ are constants)