EXAMPLE OF TEST OF THE UNITS 2 AND 3

Grading criteria:

For correct answer: 2 points For wrong answer: -2/3 points No answer: 0 points.

1. Value of Z_1 that makes the real generator (E_g, R_g) deliver the maximum power in the following circuit

Figura 1

- (a) $Z_1 = 100j \ \Omega$
- (b) $Z_1 = 200j \ \Omega$
- (c) $Z_1 = -200j \Omega$
- (d) $Z_1 = -100j \Omega$

(a)

2. Knowing two of the parameters "*y*" ($y_{22} = 0$ and $y_{21} = 1\Omega^{-1}$) of the quadripole, *Q*, of the figure, and knowing that $e_g(t) = 2\sin(\omega t)$ V, then the current $i_2(t)$ is

- (b) $i_2(t) = 2 \cdot \operatorname{sen}(\omega t + \pi) \operatorname{A}_{\dots}$
- (c) $i_2(t) = 0$ A....
- (d) Can not be obtained without knowing y_{11} and y_{12} .

3. In the circuit of the figure $i_1(t) = 6\cos(\omega t + \frac{\pi}{4})$ A and $i_2(t) = 3\cos(\omega t - \frac{\pi}{4})$ A, then the image parameters are

4. In the circuit of the figure, where the quadripole, *Q*, is reciprocal and symmetric, with image parameters $Z_0(\Re\{Z_0\} \neq 0)$ and $\gamma = \alpha + j\beta(\beta \neq 0)$, we can say that

- Independently of the value of Z_g , if $Z_L = Z_0$, then $P_1 = P_2 \cdot e^{2\gamma}$. Independently of the value of Z_L , if $Z_g = Z_0$, then $P_1 = P_2 \cdot e^{2\gamma}$. (a)
- (b)
- Independently of the value of Z_g , if $Z_L = Z_0$, then $P_1 = P_2 \cdot e^{2\alpha}$. Independently of the value of Z_L , if $Z_g = Z_0$, then $P_1 = P_2 \cdot e^{2\alpha}$. (c)
- (d)

5. For the circuit of the figure the quadripole, Q, is reciprocal and symmetrical quadripole, and the following values are known: $Z_e = 2\Omega$, $v_2(t) = \sin(\omega t - \pi)$ V, $i_g(t) = 3\sin(\omega t)$ and $Z_g = 1\Omega$. The "g" parameters of the quadripole are:

Answers:

1. (d)

2. (b)

3. (a)
4. (c)
5. (a)
(do not memorize the answers to the solutions, try do understand and if you have questions please ask your teacher !!)