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Problem

The scheme of the circuit shown in figure 1 corresponds to the real circuit shown in figure 2.

Figure 1. Scheme of the circuit. Figure 2. Experimental set-up of the circuit.

The circuit is connected to an external voltage source that applies the following “rec” function

, (1)

where T is the period of the signal generator which has a frequency of f, so that T=1/f, and the step

height  is  E0.  The function generator  has  an internal  resistance  Rg=50.  The coil  of inductance

L=22mH, has also an internal resistance  rL=25. For a given value of  f and  E0, the values of the

resistance, R, and the capacitance, C, are changed to see how they will affect the transient behavior
of the voltage measured at the capacitor, vC(t).

The value of the capacitance, C, can be either 470nF or 10nF.

The value of the resistance, R, can be 0, 100, 1000 or 10000

For the theoretical solution it is to consider that time the voltage E0 is applied is much longer than

the time the transient behavior happens ( ).

Theoretical solution

If then the initial conditions are close to zero: vC(0)=0, iL(0)=0. 

The circuit  is  then  solved  for   and  the  resulting  Laplace  transform of  the  voltage  at  the
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capacitor is:

, (2)

where

,

,

,

.

To obtain the inverse Laplace transform ( ) of VC(s), the following property can be used:

If , then

 , (3)

being . Thus, it only remains to obtain the Laplace transform of

. (4)

From the characteristic polynomial that appears in eq.(4), the natural frequency, , and the 
damping ration, , can be obtained:

, (5)

. (6)

Depending on the values of damping ration,  ,  or else,  depending on the roots   of the

characteristic polynomial , the following different type of solutions are obtained:

1. Under-damped,  when  ,  and  the  roots  are  complex  conjugated  ,

, being , . The following inverse Laplace transform  (Nr.

28 of the table) is obtained:

, (7)

where

, which is the voltage at rL.

,

.
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How fast  the under-dampet transient behavior decreases is given by the inverse of the time

constant  or  settling  time,  ,  obtained  from  the  real  part  of  the  roots  of  the  characteristic

polynomial. For the under-daped systems:

 , (8)

This settling time is always larger the one obtained for the over-damped and critically-damped 
solutions. And the oscillation period is given by the imaginary part of the roots:

, (9)

2. Over-damped, when  , and the roots   are real, negative and different,

being  ,  .  The  following  inverse  Laplace

transform (Nr. 11 of the table) is obtained:

, (10)

where

,

,

.

It is easy to check that  .

3. Critically damped, when , and the roots are real and equal, . The
obtained inverse Laplace transform (Nr. 34) is:

. (11)

where

,

,

.

The value of R for which the solution is critically damped (when ) is 

. (12)

Experimental set-up

The function generator is shown in figure 3, and is connected to the circuit shown in figure 2 at the
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points A and B (B is GND), and the channel 1 of the oscilloscope (shown in figure 4) is connected
to the points A' and B. To avoid flickering and replications of the visualized signal, it is necessary to
introduce  a  trigger  signal  into  the  oscilloscope  provided  by  the  same  signal  of  the  function
generator.  The input  signal  of  the  function  generator  can  also  be  visualized  by connecting  the
channel 2 of the oscilloscope to the points A and B.

Figure 3. Function generator. Figure 4. Oscilloscope.

Comparison between theoretical and experimental results

The theoretical representations of eq.(3) (with their corresponding type of solutions for g(t) given in
eq.(7), (10) or (11)) are obtained with MATLAB so that the time evolution of vC(t) is represented as
if  it  where  displayed  by  the  screen  of  the  oscilloscope,  according  to  the  VOLTS/DIV.  and
TIME/DIV. adjustments, but the time interval is restricted between 0 and T=1/f.

Generate a “rec” signal (eq. (1)) using the function generator with, for example, E0 =10V and f=100
Hz. (In the real experiment adjust the voltage with channel 1 of the oscilloscope before connecting
the function generator to the circuit).

Figura 5(a). VOLT/DIV=0.1V, TIME/DIV=1ms, f=100Hz.
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Figura 5(b). VOLT/DIV=0.5V, TIME/DIV=1ms, f=100Hz.

Figura 5(c). VOLT/DIV=2V, TIME/DIV=1ms, f=100Hz.

Figura 5(d). VOLT/DIV=5V, TIME/DIV=1ms, f=100Hz.
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Figura 5(e). VOLT/DIV=0.5V, TIME/DIV=0.2ms, f=500Hz.

Figura 5(f). VOLT/DIV=5V, TIME/DIV=0.2ms, f=500Hz.

Figura 5(g). VOLT/DIV=2V, TIME/DIV=50s, f=2000Hz.
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Matlab program

The following program for MATLAB® can be used for graphically representing the theoretical 
obtained solutions. (Copy and paste in your .m file).
 

%% Transient_response_Experiment
% Visualisation of the transient responses of a rectangular pulse.
% The theoretical results of the corresponding experiment are computed here
% to demostrate that the theory can be used to explain and predict the real
% fenomena.
%% Experimental Set-up:
% Function generator {eg(t)+Rg} connected to {R + C//{rL+L}}
% Oscilloscope (e.g. channel 1) connected to C: vC(t) is displaied
% (Ground connection have to be connected to the same ground of the source)
% The oscilloscope has to be trigered with the output signal of the
% fucntion generator.
% Channel 2 of the oscilloscope can be connected to the source output to
% also visualice the applied external "Rec" signal
 
%% DATA
%Circuits components
L=22*10^(-3); %H
rL=25; %Ohm, internal resistance of L: {rL+L}
%C=470*10^(-9);
C=10*10^(-9);
R=10000; %Ohm
%R=1000;
%R=100;
%R=685.4221
%R=0
%Funciton generator: "Rec" pulse: eg(t)=E0*(u(t)-u(t-T/2)), T=1/f
E0=10; %V
f=500; %Hz
Rg=50; %Ohm, internal resistance of the functio generator {E+Rg}
%Osciloscope set-up:
Tdiv=0.2*10^(-3); %s
Vdiv=0.5; %V
 
%% SOLUTIO
%Voltage at C: vC(t)
 
%Time interval for vC(t) is one period of the function generator
T=1/f;
t = [0:T/399:T]; 
 
%The Laplace transform of vC(t):
%VC(s)=K*(s+alpha)*(1-exp(-T*s/2))/[s*(s^2+a1*s*a0)], 
%being:
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K = E0./(C*(R+Rg));
alpha = rL./L;
a1 = rL/L + 1./(C.*(R+Rg));
a0 = (1+rL/(R+Rg))./(L*C);
 
wn = sqrt(a0); %Natural frequency
D = a1./(2*wn) %Damping ratio
tau = 1/(D*wn) %Settling time
 
%Value of R for Critically damped solution (when a1=2*sqrt(a0))
a = -2*rL*C/L; b = (rL*C/L)^2-4*C/L;
Rc(1) = 2/(-a + sqrt(a^2-4*b))-Rg; Rc(2) = 2/(-a - sqrt(a^2-4*b))-Rg;
Rc = Rc(Rc>0) %it is the positive solution
if isempty(Rc)==1
    display('there is no R to get critically damped solution')
end
clear a b
 
%The inverse Laplace transform L⁻¹ {}
%G(s)=K*(s+alpha)/[s*(s^2+a1*s*a0)] -> g(t)=L⁻¹{G(s)}
%VC(s)=G(s)*(1-exp(-T*s/2)) -> vC(t)=g(t)u(t)-g(t-T/2)u(t-T/2);
u=ones(size(t)); %u=u(t)
uT=u; uT(1:round(length(t)/2))=0; %uT=u(t-T)
if D<1; %s1 and s2 are complex conjugated (Underdamped)
    a = D.*wn;
    b = wn*sqrt(1-D^2); %Damped natural frequency
    %s1=-a+i*b; s2=-a-i*b;
    phi = atan2(b,alpha-a)-atan2(b,-a);
    A = K*alpha/(a^2+b^2);
    B = (K/b).*sqrt(((alpha-a)^2+b^2)/(a^2+b^2));
    vC1 = (A + B.*exp(-a.*t).*sin(b.*t+phi)).*u; %table Nr. 28
    vC2 = - (A + B.*exp(-a.*(t-T/2)).*sin(b.*(t-T/2)+phi)).*uT;
    vC2(isnan(vC2)==1)=0;
    vC=vC1+vC2;
elseif D>1 %s1 and s2 are real, negative and different (Overdamped)
    a = D*wn-wn.*sqrt(D^2-1); %a=-s1
    b = D*wn+wn.*sqrt(D^2-1); %b=-s2
    A = b.*(alpha-a)./(b-a);
    B = a.*(alpha-b)./(b-a);
    vC1 = (K/(a*b)).*(alpha - A.*exp(-a.*t) + B.*exp(-b.*t)).*u; %table Nr. 11
    vC2 = -(K/(a*b)).*(alpha - A.*exp(-a.*(t-T/2)) + ...
        B.*exp(-b.*(t-T/2))).*uT;
    vC2(isnan(vC2)==1)=0;
    vC=vC1+vC2;
elseif D==1 %s1=s2 are real, negative and equal (Critically damped)
    a = D.*wn; %s1=-a
    vC1 = (K/a^2).*(alpha - alpha.*exp(-a.*t) + ...
        a*(a-alpha).*t.*exp(-a.*t)).*u; %table Nr. 34
    vC2 = (K/a^2).*(alpha - alpha.*exp(-a.*(t-T/2)) + ...
        a*(a-alpha).*(t-T/2).*exp(-a.*(t-T/2))).*uT;
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    vC2(isnan(vC2)==1)=0;
    vC=vC1+vC2;
end
%(The undamped solution can not be obtained with the experiment)
  
%% Representation (con ajustes del osciloscopio)
    figure
    plot(t,vC,'LineWidth',2)
    axis([0 10*Tdiv -4*Vdiv 4*Vdiv])
    grid on
    xlabel('{\itt} (s)','FontSize',16)
    ylabel('{\itv_C} (V)','FontSize',16)
    title(['R=',num2str(R),'\Omega, C=',num2str(C*10^9),...
        'nF, \xi=',num2str(D),', \tau=',num2str(tau),'s'],'FontSize',16)

9



Questions

1. Deduce equation (2).

Consider the following cases:

a) R=10k, C=470nF.

b) R=1k, C=470nF.

c) R=100, C=470nF.

d) R=0, C=479nF

e) R=10k, C=10nF.

f) R=100, C=10nF.

g) R=685.42, C=10nF.

2. Obtain the temporal expression of vC(t) for the cases e), f), and g).

3. Perform the experiments of the measurements of vC(t) for the cases a) to f), take a picture from
the screen of the oscilloscope. Compare them with the theoretically obtained results and answer
the following questions:

3.1 For the same value of C, does the damping ratio ( ) increase or decrease for smaller R?.
How can this be explained?.

3.2 How affects the value of C to the oscillation for the under-damped cases.

3.3 Way decreases the transient response of vC(t) for 0<t<T/2 not to zero?. (or, the voltage at C
tends to the voltage at ¿…?)

7. Considering C=470nF, what is the value of R that produces the critically damped behavior.

8. What happens when the frequency of the function generator increases?. (or, what happens when

T/2 becomes closer to  ?)
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