U1. Transient circuits response

Circuit Analysis, Grado en Ingeniería de Comunicaciones Curso 2016-2017

Philip Siegmann (philip.siegmann@uah.es)
Departamento de Teoría de la Señal y Comunicaciones

Index

- Recall
- Goals and motivation
- Linear differential equation (Recall)
- The homogeneous solution
- 1st and 2nd order linear differential equations
- Examples of 2nd order circuits
- Initial conditions
- Transient responses (example on $2^{\text {nd }}$ order circuit)
- Cause of the transient responses
- Analysis using Laplace transform

$$
\left(v(t)=\frac{d W(t)}{d q}, i(t)=\frac{d q(t)}{d t}\right)
$$

Recall

- Relation between $i(t)$ and $v(t)$ for the passive elements R,L,C
- For R: $\quad v(t)=R i(t)$
- For $C: \quad q(t)=C v_{c}(t) \Rightarrow i_{C}(t)=C \frac{d v_{c}(t)}{d t}$
- For $L: \quad v_{L}(t)=L \frac{d i_{L}(t)}{d t}$
- Energy in these elements:
- Dissipated in R : $W_{R}(t)=R \int i_{R}^{2}(t) d t$
- Stored in C and L :

$$
W_{C}(t)=\frac{1}{2} C\left(v_{C}(t)\right)^{2} \quad W_{L}(t)=\frac{1}{2} L\left(i_{L}(t)\right)^{2}
$$

Goals

- We want to solve circuits for whatever applied source (not only DC and Sinusoidal Steady
State)
- Direct resolution in the time domain
- Resolution using Laplace transforms
- In particular we want to understand what happens when an abrupt change takes place in the circuit, which will produce the transient response.

Circuit Analysis / Transient circuits response / Motivation

Motivation

- Signal transmission

Circuit Analysis / Transient circuits response / Example 2nd order circuits

Examples of 2nd order circuits

- RLC-serial
(http://en.wikipedia.org/wiki/RLC circuit)

$$
\begin{aligned}
& v_{R}(t)+v_{L}(t)+v_{C}(t)=e_{g}(t) \quad \text { (Energy conservation) } \\
& \Rightarrow R i(t)+L \frac{d i(t)}{d t}+\frac{1}{C} q(t)=e_{g}(t) \\
& \Rightarrow \frac{d^{2} i(t)}{d t^{2}}+\frac{R}{L} \frac{d i(t)}{d t}+\frac{1}{L C} i(t)=\frac{1}{L} \frac{d e_{g}(t)}{d t}
\end{aligned}
$$

- RLC-parallel
$\frac{d}{d t}\left\{i_{R}(t)+i_{L}(t)+i_{C}(t)=i_{g}(t)\right\}$ (Charge conservation)

Transient response

- Response of a circuit (voltage or current) when an abrupt change happens (e.g. switching)
- Time evolution until achieving a new equilibrium
- The transition function follows exponential variations (decreasing or increasing, fluctuating or no fluctuating)
- They are solutions of linear differential equations

General solution

Linear differential equation of order n :

$$
\begin{aligned}
& \frac{d^{n} y(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} y(t)}{d t^{n-1}}+\ldots+a_{0} y(t)=g(t), \\
& y(t)=y_{h}(t)+y_{p}(t),
\end{aligned}
$$

$\boldsymbol{y}_{\boldsymbol{h}}(t)$ is the solution for $g(t)=0$: the Complementary, natural or homogeneous solution. Gives the transient behavior of the circuit due to the passive elements. It is dependent of the initial conditions.
$\boldsymbol{y}_{\boldsymbol{p}}(t)$ is a particular solution for the given source or forcing function $g(t)$. The particular solution looks like the forcing function, e.g.:

- If $g(t)$ is constant, then $y_{p}(t)$ is constant
- If $g(t)$ is sinusoidal, then $y_{p}(t)$ is sinusoidal (i.e. the S.S.S.)

The homogeneous solution decreases exponentially so that

$$
y(t \rightarrow \infty) \rightarrow y_{p}(t)
$$

The homogeneous solution

$y_{\mathrm{h}}(t)$ is the solution for $g(t)=0$ (external energy supply $=0$)
The solution has the form: $y_{\mathrm{h}}(t)=A \cdot \exp (s t)$ ("Ansatz")

$$
\text { since: } \frac{d^{k}}{d t^{k}}\left(A \mathrm{e}^{s t}\right)=A s^{k} \mathrm{e}^{s t}
$$

$\Rightarrow s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}=0$, characteristic polynomial equation
$\Rightarrow s=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \quad$ ("Eigenwerte")
$\Rightarrow y_{h}(t)=A_{1} \mathrm{e}^{s_{1} t}+A_{2} \mathrm{e}^{s_{2} t}+\ldots+A_{n} \mathrm{e}^{s_{n} t}=\sum_{k=1}^{n} A_{k} \mathrm{e}^{s_{k} t}$
A_{1}, A_{2}, \ldots are obtained with the initial (and/or boundary) conditions

Circuit Analysis / Transient circuits response / 1st nd 2nd order differential equations

1st and 2nd order linear differential equations

1st order

$$
\begin{aligned}
& \frac{d y(t)}{d t}+a_{0} y(t)=g(t) \\
& a_{0}=\frac{1}{\tau}
\end{aligned}
$$

For circuits containing one energy storage element (C or L)
τ is a time constant (how fast $y_{h}(t)$ decreases)

2nd order

$$
\begin{aligned}
& \frac{d^{2} y(t)}{d t^{2}}+a_{1} \frac{d y(t)}{d t}+a_{0} y(t)=g(t), \\
& a_{1}=2 \xi \omega_{n} \\
& a_{0}=\omega_{n}^{2}
\end{aligned}
$$

For circuits containing two independent energy storage element
ξ is called the damping ratio (accounts for the energy loss) ω_{n} is called the natural frequency (maximum energy storage)

Circuit Analysis / Transient circuits response / Ejemplos circuitos 2° orden

Example of 2° orden circuits

- RLC-serial
(http://en.wikipedia.org/wiki/RLC circuit)

$$
\begin{aligned}
& \frac{d^{2} i(t)}{d t^{2}}+\frac{R}{L} \frac{d i(t)}{d t}+\frac{1}{L C} i(t)=\frac{1}{L} \frac{d e_{g}(t)}{d t} \\
& \Rightarrow \omega_{n}=\frac{1}{\sqrt{L C}}, \xi=\frac{R}{2 \omega_{n} L}
\end{aligned}
$$

- RLC-parallel

Circuit Analysis / Transient circuits response / Initial conditions

Initial conditions

- For each energy storage element we need an initial condition (at $t=t_{0}$):
- For $C: v_{C}\left(t=t_{0}\right)=V_{0}$
- For $L: i_{L}\left(t=t_{0}\right)=I_{0}$

$$
W_{L}(t)=\frac{1}{2} C\left(v_{C}(t)\right)^{2}
$$

$$
W_{L}(t)=\frac{1}{2} L\left(i_{L}(t)\right)^{2}
$$

Condiciones iniciales

- When an abrupt change happens at $t=t_{0}$ in a circuit, there is always continuity in the variation of the energies in C and $L \Rightarrow$
- There is continuity in the voltage at C :

- There is continuity in the current trough L:

$$
i_{L}\left(t_{0}^{-}\right)=i_{L}\left(t_{0}^{+}\right) \quad\left(\text { not so for the voltage } v_{L}(t)\right)
$$

Example of transient response Discharge of the capacitor

Initial conditions at $t=0$:
$\left\{\begin{array}{l}i(0)=0 \\ v_{C}(0)=E_{g}\end{array}\right.$

$\Rightarrow \frac{d^{2} i(t)}{d t^{2}}+\frac{R}{L} \frac{d i(t)}{d t}+\frac{1}{L C} i(t)=0$,
Homogeneus (sourcefree)equaion with solutions of the form $i(t)=A \mathrm{e}^{s t}$,

Characteristic equation:
$\Rightarrow s^{2}+\frac{R}{L} s+\frac{1}{L C}=0$

Once $i(t)$ is known we can obtain $v_{C}(t)$:
$v_{C}(t)=-v_{R}(t)-v_{L}(t)=-R i(t)-L \frac{d i(t)}{d t}$

Circuit Analysis / Transient circuits response / Transient responses

Type of solutions of the homogeneous equation

$$
\begin{aligned}
& \left.\begin{array}{l}
s^{2}+a_{1} s+a_{0}=0 \text { being } a_{1}=\frac{R}{L}=2 \xi \omega_{n}, \quad a_{0}=\frac{1}{L C}=\omega_{n}^{2} \\
\left.s_{1,2}=\frac{-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{0}}}{2}=-\xi \omega_{n} \pm \omega_{n} \sqrt{\xi^{2}-1}, \text { (units : } \mathrm{s}^{-1}\right) \\
\text { If } a_{1}^{2}>4 a_{0},(\xi>1) \\
i(t)=A_{1} \mathrm{e}^{s_{t}}+A_{2} \mathrm{e}^{s_{2} t}: \text { Overdamped } \\
i(0)=A_{1}+A_{2}=0 \Rightarrow i(t)=A_{1}\left(\mathrm{e}^{s_{t} t}-\mathrm{e}^{s_{2} t}\right) \\
v_{C}(0)=-R i(0)-\left.L \frac{d i(t)}{d t}\right|_{t=0}=E_{g} \Rightarrow A_{1}=\frac{-E_{g}}{L\left(s_{1}-s_{2}\right)}
\end{array}\right\} \Rightarrow i(t)=\frac{-E_{g}\left(\mathrm{e}^{s_{t},}-\mathrm{e}^{s_{2} t}\right)}{L\left(s_{1}-s_{2}\right) .}
\end{aligned}
$$

Circuit Analysis / Transient circuits response / Transient responses

Type of solutions of the homogeneous equation

If $a_{1}^{2}<4 a_{0},(\xi<1) \Rightarrow s_{1}=s_{2}^{*}$
$i(t)=A_{1} \mathrm{e}^{-\frac{a_{1}}{2} t} \sin \left(\frac{\sqrt{4 a_{0}-a_{1}^{2}}}{2} t+\phi\right):$ Underdamped
here $\omega_{\mathrm{d}}:=\frac{\sqrt{4 a_{0}-a_{1}^{2}}}{2}$ is the damped natual frequency

$$
\left.\begin{array}{l}
i(0)=A_{1} \sin \phi=0 \Rightarrow \phi=0, \pm \pi, \pm 2 \pi, \ldots \\
v_{C}(0)=0-\left.L \frac{d i(t)}{d t}\right|_{t=0}=E_{g} \Rightarrow A_{1}=\frac{-2 E_{g}}{L \sqrt{4 a_{0}-a_{1}^{2}}}
\end{array}\right\} \Rightarrow i(t)=\frac{-2 E_{g}}{L \sqrt{4 a_{0}-a_{1}^{2}}} \mathrm{e}^{-\frac{a_{1}}{2} t} \sin \left(\frac{\sqrt{4 a_{0}-a_{1}^{2}}}{2} t\right) .
$$

The oscillation is a consequence of the energy exchange between C and L. First it moves from C to L, on the way some energy is dissipated by R. Once the remaining energy is stored in L it moves back to C dissipating again some energy in R and so on until all the energy is dissipated by R.

Circuit Analysis / Transient circuits response / Transient responses

Type of solutions of the homogeneous equation

$$
\begin{aligned}
& \text { If } a_{1}^{2}=4 a_{0},(\xi=1) \Rightarrow s_{1}=s_{2}=-\frac{a_{1}}{2}=-\frac{R}{2 L}=-\xi \omega_{n} \\
& \begin{array}{l}
i(t)=\left(A_{1}+A_{2} t\right) \mathrm{e}^{s, t}: \text { Critically damped } \\
i(0)=A_{1}=0 \Rightarrow i(t)=A_{2} t \mathrm{e}^{s_{t}} \\
\left.v_{C}(0)=0-\left.L \frac{d i(t)}{d t}\right|_{t=0}=E_{g} \Rightarrow A_{2}=\frac{-E_{g}}{L}\right\} \Rightarrow i(t)=\frac{-E_{g}}{L} t \mathrm{e}^{-\frac{a_{1}}{2} t} . \\
\text { If } a_{1}=0,(\xi=0) \\
\begin{array}{l}
i(t)=A_{1} \sin \left(\sqrt{a_{0}} t+\phi\right): 1 \text { Undamped } \\
i(0)=A_{1} \sin \phi=0 \Rightarrow \phi=0, \pm \pi, \pm 2 \pi, \ldots \\
\left.v_{C}(0)=0-\left.L \frac{d i(t)}{d t}\right|_{t=0}=E_{g} \Rightarrow A_{1}=\frac{-E_{g}}{L \sqrt{a_{0}}}\right\} \Rightarrow i(t)=-E_{g} \sqrt{\frac{C}{L}} \sin \left(\frac{1}{\sqrt{L C}} t\right) .
\end{array}
\end{array} \text { undamped n: }
\end{aligned}
$$

Circuit Analysis / Transient circuits response / Transient responses

Type of solutions of the homogeneous equation

Discharge of the capacitor

Cause of the transient respinse

- RLC-serie. The resulting damping ratio is:

$$
\xi=\frac{R}{2 \omega_{n} L}
$$

Is proportional to R because the energy dissipated in R increases with R :

$$
p_{R}(t)=R i^{2}(t)
$$

- RLC-parallel. The resulting damping ratio is:

Is inversely proportional to R since the energy dissipated in R decreases with R :

$$
p_{R}(t)=R i_{R}^{2}(t)=\frac{v^{2}(t)}{R}
$$

Circuit Analysis / Transient circuits response / Analysis using Laplace transform Transient circuit's analysis
using Laplace transforms

- By using Laplace transforms the circuits can be solved much easily:
- No differential equation has to be obtained
- We will solve algebraic instead of differential equations
- No need to perform the tedious operations to calculate the constants (A_{1}, A_{2}, \ldots) of the solution

Laplace transform (\mathcal{L})

- The solutions are superposition's of exponential decreasing functions starting from the initial instant $(t=0)$

$$
y(t)=\sum_{n} A_{n} \mathrm{e}^{s_{n} t}
$$

- The Laplace transform (\mathcal{L}) allows to transform the differential equation into an algebraic equation with coefficients $A(s)$

$$
A(s)=\mathcal{L}[y(t)]=\int_{0}^{\infty} y(t) \mathrm{e}^{-s t} d t
$$

Some properties of \mathcal{L}

Ohm's and Kirchhoff law's

- \mathcal{L} is lineal, $F(s)=\mathcal{L}[f(t)]$

$$
f_{3}(t)=a f_{1}(t)+b f_{2}(t) \Leftrightarrow F_{3}(s)=a F_{1}(s)+b F_{2}(s)
$$

- \mathcal{L} of a derivation

$$
\mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0)
$$

- Time translation

$$
\mathcal{L}\left[f\left(t-t_{0}\right)\right]=\mathrm{e}^{-s t_{0}} \mathcal{L}[f(t)], \quad \text { if } f\left(t<t_{0}\right)=0
$$

- Translation in s domain

$$
F(s-a)=\mathcal{L}\left[\mathrm{e}^{t a} f(t)\right]
$$

- Theorem of the final and initial value

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0}(s F(s)), \\
& \lim _{t \rightarrow 0} f(t)=\lim _{s \rightarrow \infty}(s F(s)) .
\end{aligned}
$$

\mathcal{L} of some functions

- Step function displaced in time

$$
\stackrel{t_{0}}{\mathcal{t _ { 0 }}} \mathcal{L}\left[A u\left(t-t_{0}\right)\right]=A \mathrm{e}^{-t_{0} S} \mathcal{L}[u(t)]=\frac{A}{S} \mathrm{e}^{-t_{0} s}
$$

- Slope

$$
\xlongequal[D_{0}^{t_{0}}]{A} \mathcal{L}\left[A\left(t-t_{0}\right) u\left(t-t_{0}\right)\right]=A \mathrm{e}^{-t_{0} s} \mathcal{L}[t u(t)]=\frac{A}{s^{2}} \mathrm{e}^{-t_{0} s}
$$

- Rec function

$$
\underset{{ }^{A}}{\square} _\mathcal{L}\left[A\left(u(t)-u\left(t-t_{0}\right)\right)\right]=\frac{A}{s}-A \mathrm{e}^{-t_{0} s} \mathcal{L}[u(t)]=\frac{A}{s}\left(1-\mathrm{e}^{-t_{0} s}\right)
$$

- Dirac delta function

$$
\frac{\uparrow}{t_{0}} \quad \mathcal{L}\left[\delta\left(t-t_{0}\right)\right]=\mathrm{e}^{-t_{0} s} \mathcal{L}[\delta(t)]=1 \mathrm{e}^{-t_{0} s}
$$

- Periodic functions with period \boldsymbol{T}

$$
\begin{aligned}
& f(t)=\sum_{n} g(t-n T), \quad g(t)=f(t)(u(t)-u(t-T)) \\
& \mathcal{L}[f(t)]^{n} \sum_{n} \mathcal{L}[g(t)] \mathrm{e}^{n T s}=\frac{\mathcal{L}[g(t)]}{1-\mathrm{e}^{T_{s}}}
\end{aligned}
$$

\mathcal{L} of some functions

- Exponential
- Sine

$$
\mathcal{L}\left[\mathrm{e}^{-a t}\right]=\frac{1}{s+a}
$$

$$
\mathcal{L}[\sin a t]=\frac{a}{s^{2}+a^{2}}
$$

- Cosine

$$
\mathcal{L}[\cos a t]=\frac{s}{s^{2}+a^{2}}
$$

- In practice we will use a table with the most common inverse Laplace transforms (\mathcal{L}^{-1}) used for the resolution of the proposed problems

Resolution using Laplace

- The circuits will be solved in the Laplace domain:
- Draw the circuit in the transformed domain, for this the initial conditions are deeded: $i_{L}(0), v_{C}(0)$.
- The transformed circuit is then solved using the known methods, thus, by applying the Kirchhoff laws to the transformed currents and voltages: $I(s), V(s)$. . $\left.^{*}\right)$
- Ones you know the Laplace transformed voltage or current, the inverse Laplace transform is applied to get the currents and voltages in the time domain

$$
i(t)=\mathcal{L}^{-1}[I(s)], \quad v(t)=\mathcal{L}^{-1}[V(s)]
$$

(*): Convention: Laplace transformed variables in capital letters

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

\mathcal{L} transform of the inductor

$I_{L}(s)=\mathcal{L}\left[i_{L}(t)\right]$,
$V_{L}(s)=\mathcal{L}\left[v_{L}(t)\right]$,
$V_{L}(s)=\int_{0}^{\infty} v_{L}(t) e^{-s t} d t=L \int_{0}^{\infty} \frac{d i_{L}(t)}{d t} e^{-s t} d t=L s\left(I_{L}(s)-\frac{i_{L}(0)}{s}\right)$.

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

\mathcal{L} transform of the capacitor

$$
\begin{aligned}
& I_{C}(s)=\mathcal{L}\left[i_{C}(t)\right], \\
& V_{C}(s)=\mathcal{L}\left[v_{C}(t)\right], \\
& V_{C}(s)=\int_{0}^{\infty} v_{C}(t) e^{-s t} d t=\frac{1}{C} \int_{0}^{\infty} q(t) e^{-s t} d t=\frac{1}{C}\left(\frac{q(0)}{s}+\frac{1}{s} I_{C}(s)\right) \\
& =\frac{1}{s C} I_{C}(s)+\frac{v_{C}(0)}{s} .
\end{aligned}
$$

\mathcal{L} transform of the generator

- After the switching:

For example: $\mathcal{L}[E]=\frac{E}{s}, \mathcal{L}[\sin a t]=\frac{a}{s^{2}+a^{2}}, \quad \mathcal{L}[\cos a t]=\frac{s}{s^{2}+a^{2}}$

- If the switching happens at $\boldsymbol{t}_{\mathbf{0}} \neq \mathbf{0}$, perform a time translation by defining: $\boldsymbol{t}=\boldsymbol{t} \boldsymbol{-} \boldsymbol{t}_{\boldsymbol{0}}$. This has to be taken into account by performing the inverse transform.

Initial conditions

- The initial condition we need are:
- The currents trough each of the coils just after the switching takes place: $i_{L}\left(t_{0}{ }^{+}\right)$
- The voltages at the terminals of the capacitors after the switching takes place: $v_{C}\left(t_{0}{ }^{+}\right)$
- If they are not known, then they have to be calculated by a previous (before the switching) resolution of the circuit,
- Remember: $i_{L}\left(t_{0}^{+}\right)=i_{L}\left(t_{0}^{-}\right), v_{C}\left(t_{0}^{+}\right)=v_{C}\left(t_{0}{ }^{-}\right)$

Resolution in the \mathcal{L}-domain

- The transformed circuit is solved by applying the mesh or nod methods of the transformed voltages or the currents which depend on the variable s.
- The following expression for the voltage or current has to be obtained:

$$
Y(s) \propto \frac{f(s)}{s^{2}+a_{1} s+a_{0}}
$$

where the denominator is the characteristic equation:

$$
s^{2}+a_{1} s+a_{0}=0 \Rightarrow s_{1,2}=\frac{1}{2}\left(-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{0}}\right)
$$

From which the roots (s_{1} and s_{2}) are obtained, these allows:

- Predict the kind of solution
- Find the inverse in the Laplace transform table

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

Predicting of the kind of solution

- If the roods are real and different

$$
Y(s) \propto \frac{f(s)}{s^{2}+a_{1} s+a_{0}}=\frac{f(s)}{\left(s-s_{1}\right)\left(s-s_{2}\right)} \xrightarrow{\mathcal{L}^{-1}} y(t) \propto A_{1} \mathrm{e}^{s_{1} t}+A_{1} \mathrm{e}^{s_{2} t}
$$

- For equal and real roots

$$
Y(s) \propto \frac{f(s)}{s^{2}+a_{1} s+a_{0}}=\frac{f(s)}{\left(s-s_{1}\right)^{2}} \xrightarrow{⺊^{-1}} y(t) \propto\left(A_{1}+A_{2} t\right) \mathrm{e}^{s_{1} t}
$$

- For complex conjugated roots: $s_{1,2}=p \pm \mathrm{j} q$

$$
Y(s) \propto \frac{f(s)}{s^{2}+a_{1} s+a_{0}}=\frac{f(s)}{(s-p)^{2}+q^{2}} \xrightarrow{\mathcal{L}^{-1}} y(t) \propto A e^{p t} \sin (q t+\phi)
$$

- Imaginary roots: $s_{1,2}= \pm \mathrm{j} q$

$$
Y(s) \propto \frac{f(s)}{s^{2}+a_{1} s+a_{0}}=\frac{f(s)}{s^{2}+q^{2}} \xrightarrow{\mathcal{L}^{-1}} y(t) \propto A \sin (q t+\phi)
$$

Inverse Laplace transform $\left(\mathcal{L}^{-1}\right)$

- The roots of the characteristic equation allows:
- To know beforehand the kind of solution
- It makes easier to find the inverse Laplace transform in the inverse Laplace transform table.
- Do not forget: if there was a time shifting, substitute t ' by $t-t_{0}$ in the inverse transform.
- The obtained solution is defined for a time interval after the switching.
- Check the initial condition.

Example 1

- In the circuit of the figure, the switcher is in position (1) since $t=-\infty$. At $t=\pi / 2$ the switcher changes to position (2). Obtain the temporal evolution of $i_{L}(t)$.

Data: $e_{g}(t)=2 \cos 2 t \mathrm{~V}, R=2 \Omega, L=1 \mathrm{H}, C=0.5 \mathrm{~F}$.

Example 2

- In the circuit of the figure, the switcher is in position (1) since $t=-\infty$. At $t=0$ the switcher switches to position (2). Obtain the temporal evolution of $v_{C}(t)$.

Data: $e(t)=10 \mathrm{~V}, R_{g}=R_{1}=1 \Omega, R_{2}=2 \Omega, L=1 \mathrm{H}, C=2 \mathrm{~F}$.

Circuit Analysis / Transient circuits response / Simulation

Simulation with 5 Spice

Circuit Analysis / Transient circuits response

Simulación con 5Spice

