U1. Transient circuits response

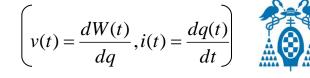
Circuit Analysis, Grado en Ingeniería de Comunicaciones Curso 2016-2017

Philip Siegmann (<u>philip.siegmann@uah.es</u>) Departamento de Teoría de la Señal y Comunicaciones

Index

- Recall
- Goals and motivation
- Linear differential equation (Recall)
- The homogeneous solution
- 1st and 2nd order linear differential equations
- Examples of 2nd order circuits
- Initial conditions
- Transient responses (example on 2nd order circuit)
- Cause of the transient responses
- Analysis using Laplace transform

Circuit Analysis / Transient circuits response / Recall

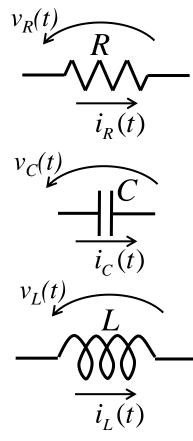


Relation between *i*(*t*) and *v*(*t*) for the passive elements *R*,*L*,*C*

- For R: v(t) = Ri(t)- For C: $q(t) = Cv_C(t) \Rightarrow i_C(t) = C\frac{dv_C(t)}{dt}$ - For L: $v_L(t) = L\frac{di_L(t)}{dt}$

- Energy in these elements:
 - Dissipated in *R*: $W_R(t) = R \int i_R^2(t) dt$
 - Stored in C and L:

$$W_{C}(t) = \frac{1}{2} C (v_{C}(t))^{2} \qquad W_{L}(t) = \frac{1}{2} L (i_{L}(t))^{2}$$



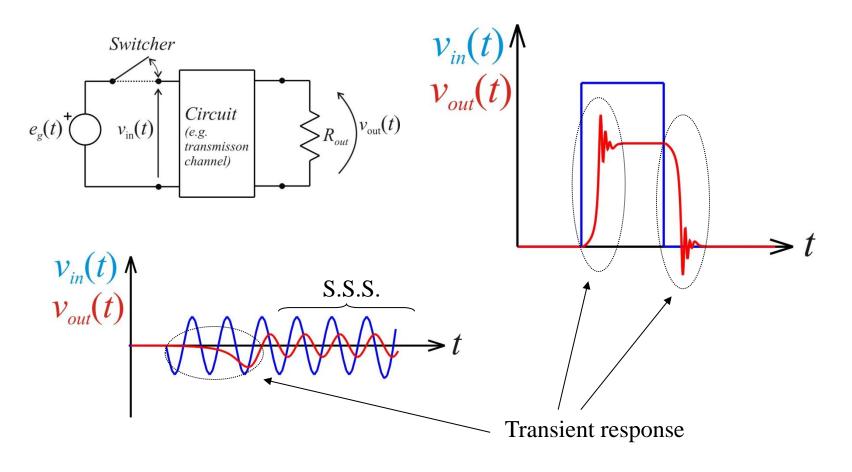
Goals

- We want to solve circuits for whatever applied source (not only DC and Sinusoidal Steady State)
 - Direct resolution in the time domain
 - Resolution using Laplace transforms
- In particular we want to understand what happens when an abrupt change takes place in the circuit, which will produce the transient response.

Circuit Analysis / Transient circuits response / Motivation

Motivation

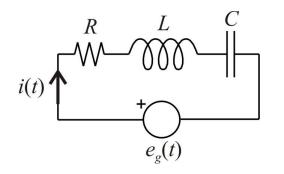
Signal transmission



Examples of 2nd order circuits

RLC-serial ۲

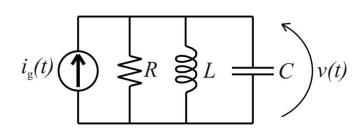
(http://en.wikipedia.org/wiki/RLC_circuit)



 $v_R(t) + v_L(t) + v_C(t) = e_g(t)$ (Energy conservation)

$$\Rightarrow Ri(t) + L\frac{di(t)}{dt} + \frac{1}{C}q(t) = e_g(t)$$
$$\Rightarrow \frac{d^2i(t)}{dt^2} + \frac{R}{L}\frac{di(t)}{dt} + \frac{1}{LC}i(t) = \frac{1}{L}\frac{de_g(t)}{dt}$$

RLC-parallel



 $\frac{d}{dt} \left\{ i_R(t) + i_L(t) + i_C(t) = i_g(t) \right\}$ (Charge conservation) $\Rightarrow \frac{1}{R} \frac{dv(t)}{dt} + \frac{1}{L}v(t) + C \frac{d^2v(t)}{dt^2} = \frac{di_g(t)}{dt}$ $\Rightarrow \frac{d^2v(t)}{dt^2} + \frac{1}{RC} \frac{dv(t)}{dt} + \frac{1}{LC}v(t) = \frac{1}{C} \frac{di_g(t)}{dt}$

Transient response

- Response of a circuit (voltage or current) when an abrupt change happens (e.g. switching)
- Time evolution until achieving a new equilibrium
- The transition function follows exponential variations (decreasing or increasing, fluctuating or no fluctuating)
- They are solutions of linear differential equations

General solution

Linear differential equation of order *n*:

$$\frac{d^{n} y(t)}{dt^{n}} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \dots + a_{0} y(t) = g(t),$$

$$y(t) = y_{h}(t) + y_{p}(t),$$

 $y_h(t)$ is the solution for g(t)=0: the Complementary, natural or homogeneous solution. Gives the *transient behavior* of the circuit due to the passive elements. It is dependent of the initial conditions.

 $y_p(t)$ is a particular solution for the given source or forcing function g(t). The particular solution looks like the forcing function, e.g.:

- If g(t) is constant, then $y_p(t)$ is constant
- If g(t) is sinusoidal, then $y_p(t)$ is sinusoidal (i.e. the S.S.S.)

The homogeneous solution decreases exponentially so that

$$y(t \to \infty) \to y_p(t)$$

The homogeneous solution

- $y_h(t)$ is the solution for g(t)=0 (external energy supply =0)
- The solution has the form: $y_h(t) = A \cdot \exp(st)$ ("Ansatz")

since:
$$\frac{d^k}{dt^k} (A e^{st}) = As^k e^{st}$$

 $\Rightarrow s^n + a_{n-1}s^{n-1} + \dots + a_0 = 0$, characteristic polynomial equation
 $\Rightarrow s = \{s_1, s_2, \dots, s_n\}$ ("Eigenwerte")
 $\Rightarrow y_h(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t} + \dots + A_n e^{s_n t} = \sum_{k=1}^n A_k e^{s_k t}$
 A_1, A_2, \dots are obtained with the initial (and/or boundary) conditions

Circuit Analysis / Transient circuits response / 1st nd 2nd order differential equations

1st and 2nd order linear differential equations

<u>1st order</u>

$$\frac{dy(t)}{dt} + a_0 y(t) = g(t),$$
$$a_0 = \frac{1}{\tau}$$

For circuits containing one energy storage element (*C* or *L*)

 τ is a time constant (how fast $y_h(t)$ decreases)

2nd order

$$\frac{d^2 y(t)}{dt^2} + a_1 \frac{dy(t)}{dt} + a_0 y(t) = g(t),$$

$$a_1 = 2\xi \omega_n$$

$$a_0 = \omega_n^2$$

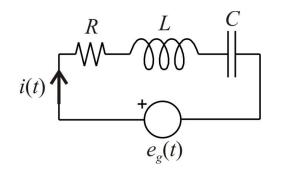
For circuits containing two independent energy storage element

 ξ is called the **damping ratio** (accounts for the energy loss) ω_n is called the **natural frequency** (maximum energy storage) (<u>http://en.wikipedia.org/wiki/Damping</u>) Circuit Analysis / Transient circuits response / Ejemplos circuitos 2º orden

Example of 2° orden circuits

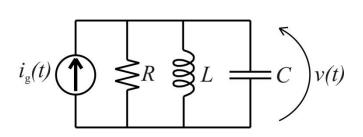
• RLC-serial

(http://en.wikipedia.org/wiki/RLC_circuit)



 $\frac{d^2 i(t)}{dt^2} + \frac{R}{L}\frac{di(t)}{dt} + \frac{1}{LC}i(t) = \frac{1}{L}\frac{de_g(t)}{dt}$ $\Rightarrow \omega_n = \frac{1}{\sqrt{LC}}, \xi = \frac{R}{2\omega L}$

• RLC-parallel



$$\frac{d^2 v(t)}{dt^2} + \frac{1}{RC} \frac{dv(t)}{dt} + \frac{1}{LC} v(t) = \frac{1}{C} \frac{di_g(t)}{dt}$$
$$\Rightarrow \omega_n = \frac{1}{\sqrt{LC}}, \ \xi = \frac{1}{2R\omega_n C}$$

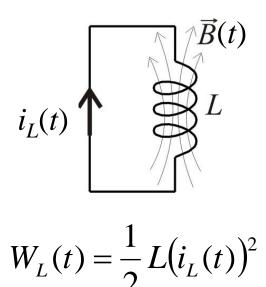
Initial conditions

• For each energy storage element we need an initial condition (at $t=t_0$):

- For *C*:
$$v_C(t=t_0) = V_0$$

- For *L*:
$$i_L(t=t_0) = I_0$$





Condiciones iniciales

• When an abrupt change happens at $t=t_0$ in a circuit, there is always continuity in the variation of the energies in C and $L \Rightarrow$

– There is continuity in the voltage at C:

 $|v_C(t_0^+) = v_C(t_0^+)|$ (not so for the current $i_C(t)$)

Justo antes de t_0 | | Justo después de t_0

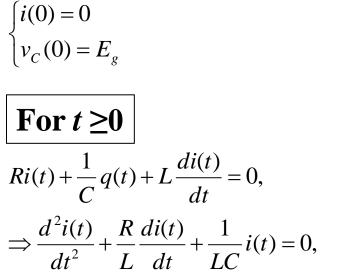
– There is continuity in the current trough L:

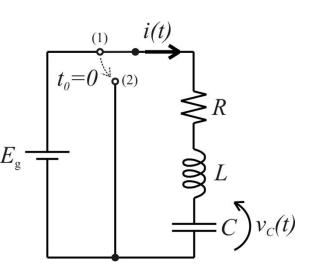
$$i_L(t_0^{-}) = i_L(t_0^{+})$$

(not so for the voltage $v_L(t)$)

Example of transient response Discharge of the capacitor

Initial conditions at t = 0:





Homogeneus (sourcefree) equaion with solutions of the form $i(t) = A e^{st}$,

Characteristic equation:

$$\Rightarrow s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

Once *i(t)* is known we can obtain $v_C(t)$: $v_C(t) = -v_R(t) - v_L(t) = -Ri(t) - L\frac{di(t)}{dt}$

t (s)

Type of solutions of the homogeneous equation

$$s^{2}+a_{1}s + a_{0} = 0 \text{ being } a_{1} = \frac{R}{L} = 2\xi \omega_{n}, \quad a_{0} = \frac{1}{LC} = \omega_{n}^{2}$$

$$s_{1,2} = \frac{-a_{1} \pm \sqrt{a_{1}^{2} - 4a_{0}}}{2} = -\xi \omega_{n} \pm \omega_{n} \sqrt{\xi^{2} - 1}, \text{ (units : s^{-1})}$$
If $a_{1}^{2} > 4a_{0}, (\xi > 1)$

$$i(t) = A_{1} e^{s_{1}t} + A_{2} e^{s_{2}t} : \text{Overdamped}$$

$$i(0) = A_{1} + A_{2} = 0 \Rightarrow i(t) = A_{1} (e^{s_{1}t} - e^{s_{2}t})$$

$$v_{c}(0) = -Ri(0) - L\frac{di(t)}{dt}\Big|_{t=0} = E_{g} \Rightarrow A_{1} = \frac{-E_{g}}{L(s_{1} - s_{2})} \Rightarrow i(t) = \frac{-E_{g} (e^{s_{1}t} - e^{s_{2}t})}{L(s_{1} - s_{2})}.$$

$$s_{10}^{0} = \frac{1}{2} \int_{0}^{0} \int_{0}^{$$

Type of solutions of the homogeneous equation

$$i(t) = A_1 e^{-\frac{a_1}{2}t} \sin\left(\frac{\sqrt{4a_0 - a_1^2}}{2}t + \phi\right):$$
 Underdamped
here $\omega_d := \frac{\sqrt{4a_0 - a_1^2}}{2}$ is the damped natual frequency

$$i(0) = A_1 \sin \phi = 0 \Longrightarrow \phi = 0, \pm \pi, \pm 2\pi, ...$$
$$v_C(0) = 0 - L \frac{di(t)}{dt} \Big|_{t=0} = E_g \Longrightarrow A_1 = \frac{-2E_g}{L\sqrt{4a_0 - a_1^2}}$$

If $a_1^2 < 4a_0, (\xi < 1) \Longrightarrow s_1 = s_2^*$

$$A_{1} = A_{1}e^{-a_{1}/2}$$

$$A_{1}e^{-a_{1}/2}$$

$$T=2\pi/\omega_{d}$$

$$I=2\pi/\omega_{d}$$

$$t$$

$$0$$

$$0.005$$

$$0.01$$

$$0.015$$

$$0.02$$

The oscillation is a consequence of the energy exchange between C and L. First it moves from C to L, on the way some energy is dissipated by R. Once the remaining energy is stored in L it moves back to C dissipating again some energy in R and so on until all the energy is dissipated by R.

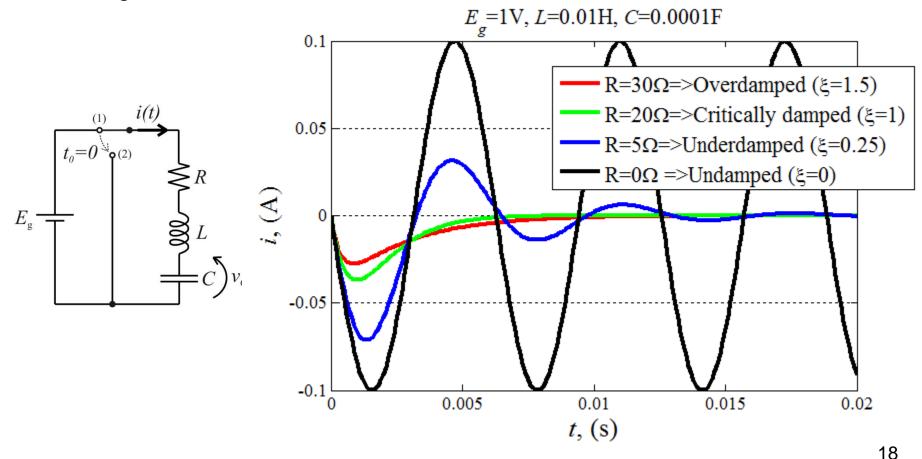
$$\frac{1}{1-a_1^2} \Rightarrow i(t) = \frac{-2E_g}{L\sqrt{4a_0 - a_1^2}} e^{-\frac{a_1}{2}t} \sin\left(\frac{\sqrt{4a_0 - a_1^2}}{2}t\right).$$

Type of solutions of the homogeneous equation

If
$$a_1^2 = 4a_0$$
, $(\xi = 1) \Rightarrow s_1 = s_2 = -\frac{a_1}{2} = -\frac{R}{2L} = -\xi \omega_n$
 $i(t) = (A_1 + A_2 t)e^{s_1 t}$: Critically damped
 $i(0) = A_1 = 0 \Rightarrow i(t) = A_2 t e^{s_1 t}$
 $v_C(0) = 0 - L\frac{di(t)}{dt}\Big|_{t=0} = E_g \Rightarrow A_2 = \frac{-E_g}{L}$
 $\Rightarrow i(t) = \frac{-E_g}{L} t e^{-\frac{a_1}{2}t}$.
If $a_1 = 0$, $(\xi = 0)$
 $i(t) = A_1 \sin(\sqrt{a_0}t + \phi)$: Undamped
 $i(0) = A_1 \sin \phi = 0 \Rightarrow \phi = 0, \pm \pi, \pm 2\pi, ...$
 $v_C(0) = 0 - L\frac{di(t)}{dt}\Big|_{t=0} = E_g \Rightarrow A_1 = \frac{-E_g}{L\sqrt{a_0}}$
 $\Rightarrow i(t) = -E_g \sqrt{\frac{C}{L}} \sin\left(\frac{1}{\sqrt{LC}}t\right)$.

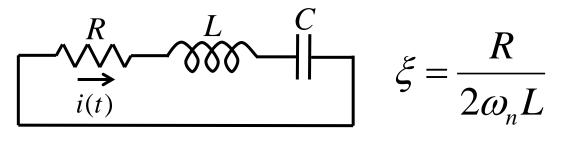
Type of solutions of the homogeneous equation

Discharge of the capacitor



Cause of the transient respinse

• RLC-serie. The resulting damping ratio is:



 $\frac{R}{2\omega_n L} \begin{array}{l} \text{Is proportional to } R \\ \text{because the energy} \\ \text{dissipated in } R \text{ increases} \\ \text{with } R: \end{array}$

$$p_R(t) = Ri^2(t)$$

• RLC-parallel. The resulting damping ratio is:

$$i(t) \downarrow \begin{cases} R & L \\ R & C \\ \end{cases} C \qquad \xi = \frac{1}{2R\omega_n C}$$

Is inversely proportional to *R* since the energy dissipated in *R* decreases with *R*:

$$p_R(t) = Ri_R^2(t) = \frac{v^2(t)}{R}$$

Transient circuit's analysis using Laplace transforms

- By using Laplace transforms the circuits can be solved much easily:
 - No differential equation has to be obtained
 - We will solve algebraic instead of differential equations
 - No need to perform the tedious operations to calculate the constants $(A_1, A_2, ...)$ of the solution

Laplace transform (${\cal L}$)

 The solutions are superposition's of exponential decreasing functions starting from the initial instant (*t*=0)

$$y(t) = \sum_{n} A_{n} e^{s_{n}t}$$

 The Laplace transform (*L*) allows to transform the differential equation into an algebraic equation with coefficients *A*(*s*)

$$A(s) = \mathcal{L}[y(t)] = \int_{0}^{\infty} y(t) e^{-st} dt$$

Some properties of $\mathcal L$

Ohm's and Kirchhoff law's are still valid in \mathcal{L} -domain

- \mathcal{L} is lineal, $F(s) = \mathcal{L}[f(t)]$ $f_3(t) = af_1(t) + bf_2(t) \Leftrightarrow F_3(s) = aF_1(s) + bF_2(s)$
- \mathcal{L} of a derivation

$$\mathcal{L}\left[f^{(n)}(t)\right] = s^{n} \mathcal{L}\left[f(t)\right] - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$$
Differential equation are transformed into algebraic equations

Time translation

$$\mathcal{L}[f(t-t_0)] = e^{-st_0} \mathcal{L}[f(t)], \text{ if } f(t < t_0) = 0$$

Translation in s domain

$$F(s - a) = \mathcal{L}\left[e^{ta} f(t)\right]$$

Theorem of the final and initial value

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} (sF(s)),$$
$$\lim_{t \to 0} f(t) = \lim_{s \to \infty} (sF(s)).$$

$\mathcal L$ of some functions

• Step function displaced in time $\int_{t_0}^{A} \int_{t_0} \mathcal{L}[Au(t-t_0)] = A e^{-t_0 s} \mathcal{L}[u(t)] = \frac{A}{s} e^{-t_0 s}$ • Slope

$$\mathcal{L}[A(t-t_0)u(t-t_0)] = A e^{-t_0 s} \mathcal{L}[tu(t)] = \frac{A}{s^2} e^{-t_0 s}$$

Rec function

$$\int_{0}^{A} \int_{t_{0}} \mathcal{L}\left[\frac{A(u(t) - u(t - t_{0}))}{s}\right] = \frac{A}{s} - A e^{-t_{0}s} \mathcal{L}\left[u(t)\right] = \frac{A}{s} \left(1 - e^{-t_{0}s}\right)$$

- Periodic functions with period T

$$f(t) = \sum_{n} g(t - nT), \quad g(t) = f(t)(u(t) - u(t - T))$$
$$\mathcal{L}[f(t)] = \sum_{n} \mathcal{L}[g(t)] e^{nTs} = \frac{\mathcal{L}[g(t)]}{1 - e^{Ts}}$$

23

$\mathcal L$ of some functions

• Exponential

$$\mathcal{L}\left[\mathrm{e}^{-at}\right] = \frac{1}{s+a}$$

• Sine

$$\mathcal{L}[\sin at] = \frac{a}{s^2 + a^2}$$

Cosine

$$\mathcal{L}[\cos at] = \frac{s}{s^2 + a^2}$$

• In practice we will use a table with the most common inverse Laplace transforms (\mathcal{L}^{-1}) used for the resolution of the proposed problems

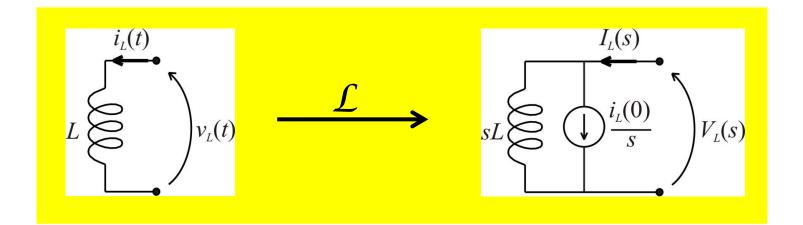
Resolution using Laplace

- The circuits will be solved in the Laplace domain:
 - Draw the circuit in the transformed domain, for this the initial conditions are deeded: $i_L(0), v_C(0)$.
 - The transformed circuit is then solved using the known methods, thus, by applying the Kirchhoff laws to the transformed currents and voltages: I(s), V(s).^(*)
 - Ones you know the Laplace transformed voltage or current, the inverse Laplace transform is applied to get the currents and voltages in the time domain

$$i(t) = \mathcal{L}^{-1}[I(s)], \quad v(t) = \mathcal{L}^{-1}[V(s)]$$

(*): Convention: Laplace transformed variables in capital letters

$\boldsymbol{\mathit{\mathcal{L}}}$ transform of the inductor

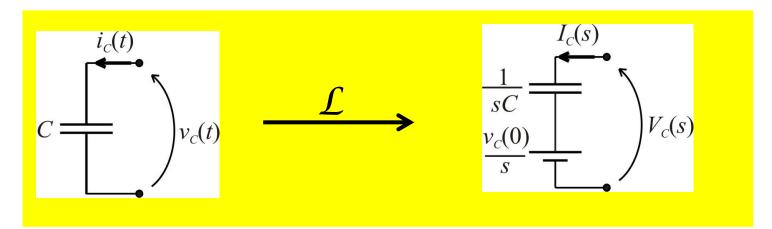


$$I_{L}(s) = \mathcal{L}[i_{L}(t)],$$

$$V_{L}(s) = \mathcal{L}[v_{L}(t)],$$

$$V_{L}(s) = \int_{0}^{\infty} v_{L}(t)e^{-st}dt = L\int_{0}^{\infty} \frac{di_{L}(t)}{dt}e^{-st}dt = Ls\left(I_{L}(s) - \frac{i_{L}(0)}{s}\right).$$

$\boldsymbol{\mathit{\mathcal{L}}}$ transform of the capacitor

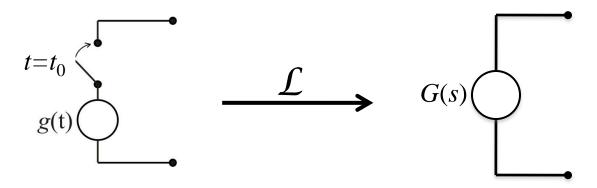


$$\begin{split} I_{C}(s) &= \mathcal{L}[i_{C}(t)], \\ V_{C}(s) &= \mathcal{L}[v_{C}(t)], \\ V_{C}(s) &= \int_{0}^{\infty} v_{C}(t)e^{-st}dt = \frac{1}{C}\int_{0}^{\infty} q(t)e^{-st}dt = \frac{1}{C}\left(\frac{q(0)}{s} + \frac{1}{s}I_{C}(s)\right) \\ &= \frac{1}{sC}I_{C}(s) + \frac{v_{C}(0)}{s}. \end{split}$$

27

$\boldsymbol{\mathit{\mathcal{L}}}$ transform of the generator

• After the switching:



For example: $\mathcal{L}[E] = \frac{E}{s}$, $\mathcal{L}[\sin at] = \frac{a}{s^2 + a^2}$, $\mathcal{L}[\cos at] = \frac{s}{s^2 + a^2}$

If the switching happens at t₀≠0, perform a time translation by defining: t'=t-t₀. This has to be taken into account by performing the inverse transform.

Initial conditions

- The initial condition we need are:
 - The currents trough each of the coils just after the switching takes place: $i_L(t_0^+)$
 - The voltages at the terminals of the capacitors after the switching takes place: $v_C(t_0^+)$
- If they are not known, then they have to be calculated by a previous (before the switching) resolution of the circuit,

- Remember: $i_L(t_0^+) = i_L(t_0^-), v_C(t_0^+) = v_C(t_0^-)$

Resolution in the \mathcal{L} -domain

- The transformed circuit is solved by applying the mesh or nod methods of the transformed voltages or the currents which depend on the variable *s*.
- The following expression for the voltage or current has to be obtained:

$$Y(s) \propto \frac{f(s)}{s^2 + a_1 s + a_0}$$

where the denominator is the characteristic equation:

$$s^{2} + a_{1}s + a_{0} = 0 \Longrightarrow s_{1,2} = \frac{1}{2} \left(-a_{1} \pm \sqrt{a_{1}^{2} - 4a_{0}} \right)$$

From which the roots (s_1 and s_2) are obtained, these allows:

- Predict the kind of solution
- Find the inverse in the Laplace transform table

Predicting of the kind of solution

• If the roods are real and different

$$Y(s) \propto \frac{f(s)}{s^2 + a_1 s + a_0} = \frac{f(s)}{(s - s_1)(s - s_2)} \xrightarrow{\mathcal{L}^{-1}} y(t) \propto A_1 e^{s_1 t} + A_1 e^{s_2 t}$$

• For equal and real roots

$$Y(s) \propto \frac{f(s)}{s^{2} + a_{1}s + a_{0}} = \frac{f(s)}{(s - s_{1})^{2}} \xrightarrow{\mathcal{L}^{-1}} y(t) \propto (A_{1} + A_{2}t) e^{s_{1}t}$$

• For complex conjugated roots: $\frac{s_{1,2}}{p \pm jq}$

$$Y(s) \propto \frac{f(s)}{s^2 + a_1 s + a_0} = \frac{f(s)}{(s - p)^2 + q^2} \xrightarrow{\mathcal{L}^{-1}} y(t) \propto Ae^{pt} \sin(qt + \phi)$$

Imaginary roots: s_{1,2}=±jq

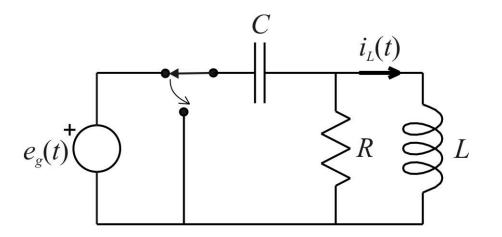
$$Y(s) \propto \frac{f(s)}{s^2 + a_1 s + a_0} = \frac{f(s)}{s^2 + q^2} \xrightarrow{\mathcal{L}^{-1}} y(t) \propto A \sin(qt + \phi)$$

Inverse Laplace transform (\mathcal{L}^{-1})

- The roots of the characteristic equation allows:
 - To know beforehand the kind of solution
 - It makes easier to find the inverse Laplace transform in the inverse Laplace transform table.
- Do not forget: if there was a time shifting, substitute *t*' by *t*-*t*₀ in the inverse transform.
- The obtained solution is defined for a time interval after the switching.
- Check the initial condition.

Example 1

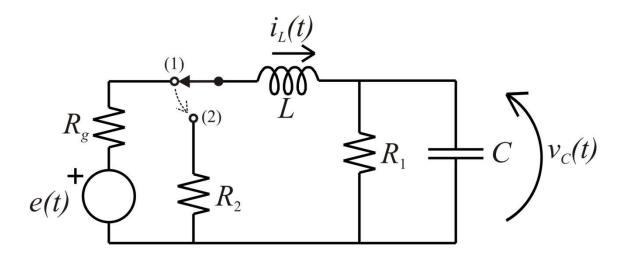
In the circuit of the figure, the switcher is in position (1) since t = -∞. At t = π/2 the switcher changes to position (2). Obtain the temporal evolution of i_L(t).



Data: $e_g(t)=2\cos 2t$ V, $R=2\Omega$, L=1H, C=0.5F.

Example 2

In the circuit of the figure, the switcher is in position (1) since *t* = -∞. At *t* =0 the switcher switches to position (2). Obtain the temporal evolution of *v_C*(*t*).



Data: e(t)=10V, $R_g=R_1=1\Omega$, $R_2=2\Omega$, L=1H, C=2F.

Simulation with 5Spice

*	5Spice	Analysis (ur	nregistered) - Anali	sis Tra	nsitorio.Sch								x
File	e Edit	Analyze	Settings	Tools	Avoid	ding Errors	Help)						
100	MAIN:	Analisis Tra	nsitorio.Sch	🗒 N	OTES	REPORTS	1	Transient - 1	1	Transient - 2				
														C
							• •						· <mark>·</mark> · · · · /	try
1		· · · · · · ·	· · · · · · ·	· · · ·							· · · · · · · ·		: : : : : : <u>-</u>	<u>Ч</u>
										· · · · · · · · ·			0	
		P TPv2		R1 3			: :		R2.	L IH	TPv1	· · · · · · ·	: : : : : : _	\$
		: †		~~~				12 1 1	\sim		· · · · · · · ·			★
		· · · · ·					<u>+</u> · ·	1,0						12
		-7 eg	Volts undefin	ed.		i i i T	•••			· · · · · · · ·				<u>ㅋ</u>
			Volts undefi Sine 1 (pe		10.5	L		(+) V1						
1		· Disto	rt: Sine und	lefined		· · · · · · · ·	• •	1) <u>1,0</u>			· · · · · · ·			۲Р _У У Ø
	· · · · ·					· · · · · · ·		· · · · · · · · · · · · · · · · · · ·				· · · · · · ·		Т
				· · · ·			: :				· · · · · · · ·	· · · · · · ·	::::::	Ð
:														*
								· · · · · · ·						
1		· · · · · ·	· · · · · ·	· · · ·			: :	· · · · · -	Title		lisis Transil	torio		
									Numb	er				-
Sc	h 🔛 🛛	Anl 📙 🛛 T=	25C Ho	ld right m	nouse b	utton to Pan :	scherr	natic Ar	alysis:	Transient - Ne	ew	•	۶.	

Circuit Analysis / Transient circuits response

Simulación con 5Spice

