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Recall 

• Relation between i(t) and v(t) for the 

passive elements R,L,C 

– For R: 

– For C: 

– For L: 

• Energy in these elements: 

– Dissipated in R:  

– Stored in C and L: 
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Goals 

• We want to solve circuits for whatever applied 

source (not only DC and Sinusoidal Steady 

State) 

– Direct resolution in the time domain 

– Resolution using Laplace transforms 

• In particular we want to understand what 

happens when an abrupt change takes place in 

the circuit, which will produce the transient 

response. 
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Motivation 

• Signal transmission 

Transient response  
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S.S.S. 
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Examples of 2nd order circuits 

• RLC-serial 
(http://en.wikipedia.org/wiki/RLC_circuit ) 

 

 

 

 

• RLC-parallel 
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(Energy conservation) 

(Charge conservation) 

Circuit Analysis / Transient circuits response / Example 2nd order circuits 

http://en.wikipedia.org/wiki/RLC_circuit
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Transient response 

• Response of a circuit (voltage or current) when 

an abrupt change happens (e.g. switching) 

• Time evolution until achieving a new equilibrium 

• The transition function follows exponential 

variations (decreasing or increasing, fluctuating 

or no fluctuating) 

• They are solutions of linear differential equations 
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General solution 
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yh(t) is the solution for g(t)=0: the Complementary, natural or homogeneous 

solution. Gives the transient behavior of the circuit due to the passive elements. 

It is dependent of the initial conditions. 

yp(t) is a particular solution for the given source or forcing function g(t). The 

particular solution looks like the forcing function, e.g.: 

 - If g(t) is constant, then yp(t) is constant 

 - If g(t) is sinusoidal, then yp(t) is sinusoidal (i.e. the S.S.S.) 

 

The homogeneous solution decreases exponentially so that  

   y(t)  yp(t) 

Linear differential equation of order n:  
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The homogeneous solution 

 yh(t) is the solution for g(t)=0 (external energy 

supply =0) 

 The solution has the form: yh(t)=A·exp(st) (“Ansatz”) 
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A1, A2, … are obtained with the initial (and/or boundary) conditions  

characteristic polynomial equation  

(“Eigenwerte”) 
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1st and 2nd order linear  

differential equations 
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 is called the damping ratio (accounts for the energy loss) 

n is called the natural frequency (maximum energy storage) 

(http://en.wikipedia.org/wiki/Damping) 
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 is a time constant (how fast yh(t) decreases) 
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1st order 

2nd order 

For circuits containing 

one energy storage 

element (C or L) 

For circuits containing 

two independent energy 

storage element 

http://en.wikipedia.org/wiki/Damping
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Example of 2º orden circuits 

• RLC-serial 
(http://en.wikipedia.org/wiki/RLC_circuit ) 

 

 

 

 

• RLC-parallel 
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http://en.wikipedia.org/wiki/RLC_circuit
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Initial conditions 

• For each energy storage element we need an 

initial condition (at t=t0): 

– For C: vC(t=t0) = V0 

– For L: iL(t=t0) = I0 
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Condiciones iniciales 

• When an abrupt change happens at t=t0 in a 

circuit, there is always continuity in the 

variation of the energies in C and L  

– There is continuity in the voltage at C: 

 

 

– There is continuity in the current trough L: 
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(not so for the current iC(t)) 

(not so for the voltage vL(t)) 
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Example of transient response 
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Discharge of the capacitor 

Characteristic equation: 
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Type of solutions of the 

homogeneous equation 
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s2+a1s +a0= 0 
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Type of solutions of the 

homogeneous equation 
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Underdamped 
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The oscillation is a consequence of the 

energy exchange between C and L. First 

it moves from C to L, on the way some 

energy is dissipated by R. Once the 

remaining energy is stored in L it moves 

back to C dissipating again some energy 

in R and so on until all the energy is 

dissipated by R. 
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Type of solutions of the 

homogeneous equation 
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Critically damped 
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undamped natual frequency 
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Type of solutions of the 

homogeneous equation 

Discharge of the capacitor 
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Cause of the transient respinse 

• RLC-serie. The resulting damping ratio  is: 

 

 

 
 

• RLC-parallel. The resulting damping ratio is: 
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Transient circuit’s analysis 

using Laplace transforms 

• By using Laplace transforms the circuits 

can be solved much easily: 

– No differential equation has to be obtained 

– We will solve algebraic instead of differential 

equations 

– No need to perform the tedious operations to 

calculate the constants (A1,A2,…) of the 

solution 
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Laplace transform (L ) 

• The solutions are superposition's of 

exponential decreasing functions starting from 
the initial instant (t=0) 

 

 

• The Laplace transform (L) allows to transform 

the differential equation into an algebraic 

equation with coefficients A(s) 
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Some properties of L 

 L is lineal, F(s)= L[f(t)] 

 

 L of a derivation 

 

 Time translation 

 

 Translation in s domain 

 

 Theorem of the final and initial value 
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Ohm’s and Kirchhoff law’s  
are still valid in L-domain 

Differential equation are transformed into algebraic equations 
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L of some functions 
• Step function displaced in time 

 

• Slope  

 

• Rec function 

 

• Dirac delta function 

 

• Periodic functions with period T 
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L of some functions 

• Exponential 

 

 

• Sine 

 

 

• Cosine 

 

 

• In practice we will use a table with the most common 
inverse Laplace transforms (L-1) used for the resolution 
of the proposed problems 
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Resolution using Laplace 

• The circuits will be solved in the Laplace 

domain: 

– Draw the circuit in the transformed domain, for this 

the initial conditions are deeded: 

– The transformed circuit is then solved using the 

known methods, thus, by applying the Kirchhoff laws 

to the transformed currents and voltages: 

– Ones you know the Laplace transformed voltage or 

current, the inverse Laplace transform is applied to 

get the currents and voltages in the time domain 

   )()(,)()( 11 sVtvsIti   LL

).0(),0( CL vi

).(),( sVsI

(*): Convention: Laplace transformed variables in capital letters 

(*) 
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L transform of the inductor 
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L transform of the capacitor 
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L transform of the generator 

• After the switching: 
 
 
 
 
 

 For example: 
 

• If the switching happens at t00, perform a time 
translation by defining: t’=t-t0. This has to be taken 
into account by performing the inverse transform. 

L 
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Initial conditions 

• The initial condition we need are: 

– The currents trough each of the coils just after 

the switching takes place: iL(t0
+) 

– The voltages at the terminals of the capacitors 

after the switching takes place: vC(t0
+) 

• If they are not known, then they have to be 

calculated by a previous (before the 

switching) resolution of the circuit, 

– Remember: iL(t0
+)=iL(t0

), vC(t0
+)=vC(t0

) 
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Resolution in the L-domain 

• The transformed circuit is solved by applying the mesh or nod 
methods of the transformed voltages or the currents which depend 
on the variable s. 

• The following expression for the voltage or current has to be 
obtained: 

 

 

 

 where the denominator is the characteristic equation: 
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– Find the inverse in the Laplace transform table 
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Predicting of the kind of solution 

• If the roods are real and different 

 

 

 

• For equal and real roots 

 

 

 

• For complex conjugated roots: s1,2=pjq 
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Inverse Laplace transform (L-1) 

• The roots of the characteristic equation allows:  

– To know beforehand the kind of solution  

– It makes easier to find the inverse Laplace transform 

in the inverse Laplace transform table. 

• Do not forget: if there was a time shifting, 

substitute t’ by t-t0 in the inverse transform. 

• The obtained solution is defined for a time 

interval after the switching. 

• Check the initial condition. 
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Example 1 

• In the circuit of the figure, the switcher is in position (1) 
since t = -. At t =/2 the switcher changes to position 
(2). Obtain the temporal evolution of iL(t). 

 

 

 

 

 

 

 

Data: eg(t)=2cos2t V, R=2, L=1H, C=0.5F. 
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Example 2 

• In the circuit of the figure, the switcher is in position (1) 
since t = -. At t =0 the switcher switches to position (2). 
Obtain the temporal evolution of vC(t). 

 

 

 

 

 

 

 

Data: e(t)=10V, Rg=R1=1, R2=2, L=1H, C=2F. 
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Simulation with  5Spice 
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Simulación con 5Spice 
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