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Introduction

• Definition of a filter: A device (i.e. 
quadripole) that selects a interval of 
frequencies from an input signal, whose 
amplitudes and phase can be modified.

• Analogical filters (signal is no discrete)
– Passive: made only with R,L and C

– Active: have also operational amplifiers, 
transistors,…

• Digital filters (signal is discrete)
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Introduction

X(s) Y(s)
Q

t (s)

Input signal (X(s))

Low-pass filter

High-pass filter

Band-pass filter

Band-stop filter

Output 

signal (Y(s))

Classification according to the selected range of  frequencies
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Transfer Function H(ss)

• Definition (Laplace Transform domain (L))
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with initial conditions equal zero (vC(0)=iL(0)=0).

H(s) is independent of the applied signal.

Note that H(s)=Y(s) when x(t)= δ(t), (h(t)=L-1[H] is the impulse response).

• For example
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Transfer Function

• Example 1

• Example 2

What kind of filter are they?

Circuit Analysis / Passive filters / Example transfer function
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Poles and zeros of H(ss)

• H(s) can be written as a fraction of two polynomials with 
real-valued and positive coefficients: 
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where cm and pm are the zeros and the poles of the 
transfer function:
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Pole-zero plot

• The poles and zeros are usually represented in a 
complex plane called the pole-zero plot to help to 

convey certain properties of the circuit

• The poles and ceros are either real or complex 

conjugated

• Poles are represented with “x”

• Zeros are represented with “o”
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Frequency response of the 

Transfer Function: H(ω)
• Frequency response using sinusoidal signals, 

then s=jω :
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• H(ω)  becomes high for ω close to pn

• H(ω)  becomes low for ω close to cm
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where

is the amplitude response,

is the phase response.
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Pole-zero plot and |H(ω)|

• Example 3
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Pole-zero plot and |H(ω)|

• Example 1
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Pole-zero plot and |H(ω)|

• Example 2
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H(s) between (Eg,Rg)  and RL
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RLC passive filters

• Low-pass filter

– 1st order

– 2nd order

• High-pass filter

– 1rt order

– 2nd order

• Band-pass filter (2nd order)

• Band-stop filter (2nd order)

Circuit Analysis / Passive filters / RLC passive filters
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Example: Low-pass filer
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Example: High-pass filer
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Example: Band-pass filer

Circuit Analysis / Passive filters / Frequency response



17

Example: Band-stop filter
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Ideal amplitude response

Low-pass filter

High-pass filter

Band-pass filter

Band-stop filter

PB: Pass band, AB: Attenuation band, ωC: Cut frequency

Circuit Analysis / Passive filters / Frequency response
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Impulse response of ideal filters

• Ideal filters can not be implemented in practice

• The real filer have to be approached to the ideal filter 
response using different methods

• The approached filters have not a constant response in 
the PB and are not entirely zero in the AB

• There exist a transition band between PB and AB

• The order of the filter coincides with the number of 
poles of H(s)

• The higher the order of the filter the close is his behavior 
as an ideal filter

• To design filters, layout templates with the tolerance 
margins are used 

Circuit Analysis / Passive filters / Real filter response
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Layout templates for filter design
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Examples of real filters
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1st order low-pass filter

• Transfer function
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Examples 1st order low-pass filter

• Low-pass RC: • Low-pass RL

L

R

H

c

L
R

L
R

=

+
=

ω

ω
ω ,

j
)(

RC

H

c

RC

RC

1

,
j

)(
1

1

=

+
=

ω

ω
ω

12

2

)0(

00)(

VVZ

VZ

C

C

→⇒∞→=

→⇒→∞→

ω

ω

21

2

0)0(

0)(

VVZ

VZ

L

L

=⇒==

→⇒∞→∞→

ω

ω

Circuit Analysis / Passive filters / 1st order low-pass filters



24

1st order high-pass filter

• Transfer function
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where ωωωωc is the cut frequency, at this frequency the attenuation of 
the signal is 3dB:
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Examples 1st order high-pass filter

• High-pass RC: • High-pass RL
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2st order passive filters

• Transfer function:

• N2(s): Polynomial of order  ≤ 2

• ξ: Damping coefficient

• ω0: Characteristic frequency of the filter

• Q=1/(2ξ): Quality factor of the circuit

• For band-pass and band stop filters:

B = ω0 /Q: Band width of the circuit 
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2nd order passive filters

• With 2nd order filter the four type of filters can be 
obtained (with 1st order only two)

• The poles of H(s) are:

• Depending on the value of ξ (or Q) we distinguish the 
following two poles:
– Real and different (ξ>1 or Q<1/2)
– Real and equal (ξ=1 or Q=1/2)
– Complex conjugated (ξ<1 or Q>1/2)

• Depending on N2(s) we have the following special 
cases:
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2nd order filters

• Low-pass filter

• High-pass filter

• Band-pass filter

• Band-stop filter

Circuit Analysis / Passive filters / 2nd order passive filter



29

2nd order low-pass filter

Example:
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2nd order high-pass filter

Example:
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2nd order band-pass filter

B=ωωωω0/Q
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2nd order Band-stop filter

Example:

B=ωωωω0/Q

2

k

B=ωωωωC,2−−−− ωωωωC,1Cut frequencies: ωωωωC,1 ωωωωC,2

2

0

2

2

0

2

0
)(

ω

ω
ω ++

+
=

ss

s
ksH

Q

Circuit Analysis / Passive filters / 2nd order band-stop filter



33

Examples 2nd order filters
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