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State Circuit analysis
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The sinusoidal signal

* Most electrical sources are Alternating Current
(AC) which periodically reverses direction, and is
the form in which electrical power is delivered.

 The usual waveform of AC is the sine wave, which
Is called Sinusoidal Steady State (SSS) regimen.
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SSS signals

« Sinusoidal sources are particularly important
because:

- Generation, transmission, consumption of electric
energy occur under sinusoidal conditions.

- It can be used to predict the behaviors of circuits with
non-sinusoidal sources (applying principle of
superposition)

« We will work with complex numbers (i.e. phasors
and impedances).

https://en.wikipedia.org/wiki/Complex_number



SSS signals

« A source that provides a sinusoidal signal is then reproduced
(after the transient behavior) by all the currents and voltages
throughout the circuit with the same frequency but with their
corresponding amplitudes and phases

o(t) = Vipsin(wt + ¢), w — 2;
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Why complex humbers?

Why using complex numbers?. Let's see it in the following
example of a simple circuit with a SSS source (excited with a

specific frequency “m")

vr(t)  wg(t)  vo(t) vi(t) + vr(t) +ve(t) = e(t)
di(l 1
/‘\/‘\/’\ @LLJrR?() . o) = e(t)
() — dﬂ-,[t; Rdi(t) 1 . det)
T @_ 7 T a1

\fi(f}: Epe/“itor) — |, cos(wt + 0p) + jEy sin(wt + ¢p)

To solve the circuit means to solve the 2™ order differential equation /s



Why complex numbers?

Since the source is: B(t) = Eﬂej(wtl'fE)
the current willbe : = i(t) = Iﬂej(“t"'ﬁbf) where I, and ¢,

are unknown

Introducing this “predicted form of solution” into the differential
equation delivers: |

(ij + R+ —) [e?91eI%t = Eﬂeﬂf}f e/t

jwc —_—t—— MY

/"//(/'

Are the so called

elements.

Impedances and will
he our new parameters
for the electrical




Phasors and Impedances

* By defining the following complex numbers we
will simplify our circuit's resolution

e Phasors of the

The phasors contain the
information of both:

- Current I —_— I[] Amplitude

| * Phase
- Voltage V V()e GD of the temporal expression
e.g. the electromotive force of a voltage source: E E{]ej%
* Impedance |
(Ohm's Law in the “phasor's domain™) °
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Phasors and Impedances

 Introducing the phasors and skipping the carrier

In the previous equation delivers

which is an
I [—F algebtraic
— equation,
Jw T h T ij mquch easier
. to solve !
whnere
JwLl =V, are the respective
_ phasors of the
1R'I = VR voltages at each

—1I=V
JwC ¢

element



Impedances of L and C

« The impedances of L, C and R are then
Vi
ZL o I = ij In our example of circuit with L, R
L and C connected in series, it can be
V- 1 seen that the phasor E is the sum of
ZC‘ — & — the voltage phasor's at each
' IC jw(/“ element: V. +V_+V_=E.
' And the current trough them is the
ZH: VH _ same: I=1 =1 =1.
- IH .
* Each passive electrical element can be characterized

with a impedance obtained by combining (i.e.
associating) these impedance’s

10



The “phasor domain”

* Using the defined impedances and phasors, the
resolution of the previous circuit simplifies to:

Phasor domain
ult) walt) el
ERNYEAAYA /\/\/\
T-NHR TJiﬂmtiu\/\/\r%
= 7
& &}
(t) " E
di(t)  Rdi(t) 1 . de(t) _
w2 TTa e b (LitIptlc)l=E "




The “phasor domain”

* The circuit's excited with SSS sources are then
solved in the “phasor domain” (i.e. using
Impedances and phasors).

- Colls and capacitors are characterized with their
Impedances (Resistors remain as they are)

- Currents and voltages are “transformed” into their
respective phasors

* When obtained the unknown phasor, the temporal
expression is obtained by multiplying it by the
carrier, for our example:

— — [e?%T ' — Jwt — j(wt+or)
P ekl = i(t) = Ie [ye )




]
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In the phasor domain

 The Kirchhoff's law's are also valid for the

phasors (thus, circuits are solved in the same
way as in DC)

» Solving the circuit in the phasor domain is like
solving it for a specific time instant for which the

different “sinusoidal signals” have each their own
phase and amplitude.

 The amplitude and the relative phase between
the signals does not change with the time.

13



Example

« Calculate of the values of i,(¢) and i,()

Data:
Ll C ata
__{m\_ | e(t) = 3sin(10%¢ + %)V
| -1 B
R = 3001
+
E'(f) R Lz L1 = 0.9mH
| i Lo = 0.3mH
* * o *1
I:l(t) ‘iﬂ(t) C' = 20nl

We use capital letters for designing phasors from their corresponding time domain
expressions where we use lower case letters. For example I versus i (%) .

14



Example

« 1) Translate into the phasor domain and solve

Z ZC e(t) = 3sin(10°% + —)V =) E =3e’% =3V
— | —d{JUEE = Zr = 3000
E+€L § L'| = (0.9mH IE:} Z]] —j 'l[:]'Er (.9. '[[]_ jQUUfE
¥ Lo =0.3mH ) Zro=j-10°.0.3-107% = 3000
1
C' = 20nF | e : — 4500
L I 2o = T ag 00 0

Applying Kirchhoff's Law's:

{ E =751+ Zp(l - Iy) = I, = 2.82 + j0.33 = 2.84¢/12mA
0=(Z¢ +Za)ly + Zr(ly - 1) I, = 1.83 — j1.19 = 2.19¢ 77" mA



Example

e
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* 2) Move back to the “time domain” to obtain the
temporal expressions of the currents

P

I, = 2.847%2mA

I, = 2.19¢ 7799 mA

i (t) = 2.84sin(10% + 0.12)mA
ia(t) = 2.19sin(10% — 0.58)mA

The source, e(t),
was a “sin”
function, therefore
the solutions are

also “sin”
functions
e (t)
i) (1)
i) (0
T 2 3 4 ; .
t(s) >c1EI-.3



Association of Z's

 Series association

[ Z1 I ZN [ ZSERIE
>+ F— 1—&=>—_1

Zm-:un—: = Z| + Zz et ZN = Zzi
« Parallel association

o O

1 1 1 1 1
Vi Z1 | Z2 ZN Ei V ZPARALELO =—+ -|-----|-—:Z—
Zh. ,- Zr.

PARALELO Z] Z?

o L

17



Example

« Calculate the currents trough each e

Can be simplified by associating

ements

A
1
z Z_ |V wp 1 CD Z, |V
B
p
Vg Vb Vi Vap = Ll
Ip=——, IL=——, lIp=—F— 4m < | 1
g L Lo 1 |
L, = +—+

(The same voltage is applied to ~ ZR Ly ZC

the three elements)
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V and l relation In R, L and C

e Supposing a current i(t) = lsin(wt +¢;) wh 1= [

VL VR

|4
C oy
Vi =ZrI = RIe'®" V,and I have the same phase
PEAYEA YA N ===
AN A Ve = 21 = it = wrie )

@ jwC wC
I ,, Data it)=sin(t+w/8)A, A=0.80, L=0.6Hy C=1.4C Note that
| | wl .'r[] — |VL
Iy
YV
o = IVel

are the amplitudes

19




_ _ N
V and | relation for a generic Z
* For any other iImpedance, the phase between
V, and L, Iis between -n/2 and m/2
Vo IVz| Sv-on) Y
L = T, 1, eV = Re|Z] = |Z| cos(dy — or) >
R(‘[Z} }} O The real part of Z is the resistive part which is always = 0
= S Kby —by € ~
<y -y < =
) STV TR

|

%

20



Power in SSS regimen

« In SSS regimen the power* in any electrical component is oscillating
since it is the product of two oscillating signals: p(t)=v(t)i(t). (The

oscillation is then 2m.) As we will see next,

- The “ideal” elements C and L are storing and releasing the energy
but not dissipating it.

— The resistor R is the passive element that dissipates the energy
although in an oscillating way:.

- For aimpedance Z, it is the real part that produces the energy
dissipation.

- The sources can deliver or absorb more or less energy depending
on the phase difference between v(t) and i(1).

« To evaluate the power with a constant value in AC, it has to be
averaged over one period

21
(*) power = energy per unit of time
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Power in SSS regimen

 The T-averaged Power Is then used in AC

signhals: 1 T
P=— [ wo(t)i(t)dt
T
For the following two generic SSS f‘m
signals with the indicated senses
v(t) = Vi cos(wt + oy ) v(t) <
i(t) = Iy cos(wt + ¢r)

1 (11 |
3 P= T/ QVUIU CD%(@V — qﬂ'j){ﬁ + — STZ oy + ED})U:t
0




Power in SSS regimen

* For SSS signals the average power becomes

P =W,

) Power factor

 The power can be obtained from the phasors

- B

V=Vl =a+jb

I=1,e/% =c+4d

(Scalar product)

1

= (VI -

|
5((1(3 + bd)

23




Power in R, L and C

* For aresistor the power factor is one since
voltage in R and current trough R have the
same phase*!!

1 1

|
| 1 1
Pr = ﬁvﬂﬁfoﬁ cos(0) QVO,RIU,R - ERI&R = §RHR|2

* For L and C the power factor Is zero since the
current trough L or C and the voltage at L or C

have a phase difference of n/2*
1 0§

Pr=P; = 51/[]]0 cos(::§) = ()

24
(*) remember slide 19
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Power dissipated by Z

—rom slide 20 we had

e}'(ﬁ?'ﬁv —¢r) _ Vo

I{}

the real part of Z appears in P:

]

1

| 1 :
Py = 5Volo cos(py — ¢p) = §Re[Z]L§ =

I

—0r a generic passive element, Z, only the real
part dissipates power.

|
1 .
~Re[Z] T
| 2

— — ((:(}S(qﬁv —_— Qﬂ‘j) + } ﬂiﬂ(@'bv _ ‘5‘51))



Power supplied/dissipated by a :¥:
source

* There Is a criteria for the sign of P depending on the
relative sense of the current and voltage (as in DC)

I and E in the same direction: The source is supposed to

supply power (:r-D)
b= 5 \LVy)

\ E

+

— E I

I and E in opposite direction: The source is supposed to
d|55|pa& power (<0) IE*

Pg =

The final sign of P, =0 or =0, tells if the source supplles or dissipates power



Example

* For the example in slide 15

7 V4
Li | IC
—000 1 E=33V  R=3000
EQ Igléz;ﬂ %zw I, = 2.82 + j0.33mA
1 Ig = 1.83 - jl.lgﬂl.ﬁx
- -
Il IE
I

_] .
Po == (ET)==(0-282+3-10°-0.33) = 497.35mW

2 2
Is =1; = I, = 0.99 + 51.52mA J

]- 1
P = §R‘Ig|2 —497.35mW - Power balance !




Effective and mean values

* There are two magnitudes that are commonly
used when measuring AC signals.

- Mean value (measures the off-set)

1 i 4
A = = x(t)dt
=0

— Effective value ( prowded by the multimeter)

Aot = f 20t
33 ] \/ “L _4m:U

For: x(t) = Ag cos(wt)

)| Aess =

S &




Magnetically coupled coils



Circuit Theory / Magnetically coupled coils

Introduction

Ampere’s circuital law for a solenoid

When an electric
current runs through
a wire, an

By winding the
wire into a tighter
coll, the field is

N

The field can be
made stronger by
placing an iron bar

electromagnetic made stronger, in the coil center,
field is generated i.e_, higher current thus, increasing
around it. and more number the power of the
of wire turns electromagnet.
produce a stronger
field.
<L N -

30



Circuit Theory / Magnetically coupled coils %{%
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Ampere’s Law

The current i(t) produces a magnetic
p(t)

flux pl(t):
w N '-(Z(;): rlnagnetic flux (\(NeberS) )
_ : i(t): electric current (amperes
‘R

e /

N: number of turns
= — 97 reluctance (henries?)

. Thumb points
* I (t) ¢ to N-pole

\}'- | " I.'
Right hand rule for N [Cj—'"__"':;g%"‘“’“‘\IS
the direction of p(t): R asanm e o

“' Lingers indcate | (t)1‘

I(t) drection 31



Circuit Theory / Magnetically coupled coils

Faraday’s law

p(t) The time varying flux p(t)
produces a voltage as shown in
the figure

—— 7\ =t d

= f '% v(t)=N ap(t)
v(t) _A

According to Len’s law, the coil can
be seen as an electromotive

Force (applying a voltage to the

g(t) circuit): |
&) =-N—2r1)

circuit

32



Circuit Theory / Magnetically coupled coils %{%

AAAAAA
AAAAAAAA
AAAAAAAAAA

Ampere + Faraday

The time varying current i(t) produces a voltage v(t):

IO (t) (*) Note that the
- d voltage is pointing to

V(t) |_ — | (t) the terminal whose

current is entering
the coll
being L the
self iInductance
coefficient:
N 2
High-permeability = ER

material (e.g. soft-
iron or ferrite)

With units in henry (H)

33



Circuit Theory / Magnetically coupled coils
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Magnetic flux outside the coil

(t) >,0c (t) p(t) = pc + ps
N\ L i
q Re  NRs
(‘\
V(t) C 0s (t) 9 : reluctance of the core,
C ¥ . leakage reluctance outside

\ / the core

core For high-permeability core
Yig>> Jic = pc>>ps

34



Circuit Theory / Magnetically coupled coils

Two magnetically coupled coils

 \Voltage difference (1)
at the colls
terminals. t 2 g
(*)In this particular i) | &
example the two q

magnetic flux inside
the core generated

by each coll have )
the same direction V. = N i(
and are therefore )t
added !!

V, =

35
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Circuit Theory / Magnetically coupled coils

Two magnetically coupled coils

 Voltage difference at the coils terminals

( (
von 4N iﬁLﬁLZJ:M d [Nl N j
< dt\mlc ml,s 9%2,(; dt 9%1 ER2,C
[
o, S Nep  Np o Ny Ny N
| dtkmz,c SRZ,S ml,C dt 9%2 ERl,C

considering:
1 1 1 1 1 EWe will supose thatJ

1
— -+ : - = -+
9%1 SR1,c: SRl,s ER2 ER2,(: SR2,5 ERl,c — 9%2 c ~ ERc:

36



Circuit Theory / Magnetically coupled coils

Two magnetically coupled coils

P T=~a

( /// d \\ / d
v, # L — |1\+ M,
) dt dt
=. d . d
V, = L, —— i My — i,
SN o | VAN t
: Self induced voliaée -
bemg 2 Mutual induced voltage
N :
L, =—*, the self inductance and
R
1
N1N2 . . .
M, = , the mutual inductance of coil 2 into 1(H)
2,C

M,, = K,+/LL,,where K, isthe coupling coefficient (0 < K, <1)

AAAAAAAAAA

37



Circuit Theory / Magnetically coupled coils

Three magnetically coupled coils

 Voltage diff. at the colls terminals in function of
the currents iy, i, and is. o 4y do o do
V1—L1d "" 12d 13d_|3
.
= \ 1,(t) W, =L, —i, +M,, —i, — M, —i,
:Osc . B ddt Cét CCIit
> v,=L,—i,—M, —i,—M,, —1i
:%LZ Vz(t) 3 3d’[ 3 31dt1 32dt 2
/ (I My, =K, yLL,,
\ \\/ M, =Ky LLs,
{ ) M =Ky Lbs.
(*): psc generated by coil 3 goes in opposite direction as p, therefore,
h the mutual induced voltage from coil 3 into coil 1 has opposite sign as
( ) the self induced voltage of coil 1

AAAAAAAA
AAAAAAAAAA
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Circuit Theory / Magnetically coupled coils

Three magnetically coupled coils

* For Sinusoidal Steady State regimen
V(t) _ |\/‘ejaeja)t _ eja)t
i(t) =|lle”el = 1!

* Time differentiating
rV1 = JoL |, + JoM , 1, — JoM ;1 ,
<V2 = _-C!)Lzlz + j(()M21|1_ _-C()M23|3

V; = Jobl; — JoM ;1 — JoM 41,

oM, = oK,/ L, = K, /oL oL, (units Q)

39



Circuit Theory / Magnetically coupled coils
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Dot’s convention

* |s used for simplifying the representation of coupled coils. It allows to
know whether the mutually induced fluxes have the same direction
or not, without need of drawing the way the spools are wounded
around the core.

* Two coupled coils can be represented in one of the two following
ways:

SE-if Sg-i

40



Circuit Theory / Magnetically coupled coils
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Dot’s convention

* If both currents entre or exit their respective coils by their dotted
ends, then the generated fluxes inside the core have the same
direction, otherwise the fluxes have opposite direction.

| ? : gw}ég

V, = joll, + joM,,I, {Vl— joLl, + joM 1,
V, = jal,l, + joM,l, , =—jal,l, - joM,,|,

" f
LS
]
‘ — |
e

41



Circuit Theory / Magnetically coupled coils géx’%
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Examples 1

* Equations for V,,V, and V,

E,=V,+V;+Z |,
0=V, -V,

(

= ja)L l,+ JoM,, 1, ja)M13( |2)
= ja)L2|2+jcf)|\/|12 . Ja)l\/|23(| |2)
V, = Ja)l—s( 17 ) JoM ;1 — JoM 1,

J\

42



Circuit Theory / Magnetically coupled coils %%
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Examples 2

* Equations for V,,V, and V,

—JoL 1, + JoM I, JC‘)M13(I +1 )
V2:_ja)L2|2+ja)M12ll+ja)MZB(Il_I_IZ)

=
/_\
o
=
/\
U
=<
/—\
-

I, I Vs = ja)l—3(|1+| )+Ja)M13 L~ Jow 41,

43



