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Magnetically coupled coils



Introduction
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Ampere’s circuital law for a solenoid



Ampere’s Law
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(t): magnetic flux (webers)

i(t): electric current (amperes)

N: number of turns

: reluctance (henries-1)
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Thumb points 
to N-pole
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The current i(t) produces a magnetic 
flux (t):

Right hand rule for 
the direction of (t):



Faraday’s law
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The time varying flux (t) 

produces a voltage as shown in 

the figure

According to Len’s law, the coil can 

be seen as an electromotive

Force (applying a voltage to the 

circuit):
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Ampere + Faraday
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being L the 

self inductance

coefficient:

With units in henry (H)

(*) Note that the 

voltage is pointing to 

the terminal whose 

current is entering 

the coil

The time varying current i(t) produces a voltage v(t):



Magnetic flux outside the coil
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C : reluctance of the core,

S : leakage reluctance outside 

the core

For high-permeability core

S >> C   C>>S
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Two magnetically coupled coils
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• Voltage difference 
at the coils 
terminals. 

(*)In this particular 
example the two 
magnetic flux inside 
the core generated 
by each coil have 
the same direction 
and are therefore 
added !!
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Two magnetically coupled coils
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• Voltage difference at the coils terminals

considering: 
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Two magnetically coupled coils
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• Voltage difference at the coils terminals

being: 
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Three magnetically coupled coils

• Voltage diff. at the coils terminals in function of 

the currents i1, i2 and i3.
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(*): 3C generated by coil 3 goes in opposite direction as 1C therefore, 

the mutual induced voltage from coil 3 into coil 1 has opposite sign as 

the self induced voltage of coil 1
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Three magnetically coupled coils

• For Sinusoidal Steady State regimen

• Time differentiating
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Dot’s convention

• Is used for simplifying the representation of coupled coils. It allows to 
know whether the mutually induced fluxes have the same direction 
or not, without need of drawing the way the spools are wounded 
around the core.

• Two coupled coils can be represented in one of the two following 
ways:
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Dot’s convention

• If both currents entre or exit their respective coils by their dotted 
ends, then the generated fluxes inside the core have the same 
direction, otherwise the fluxes have opposite direction.
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Examples 1

• Equations for V1,V2 and V3
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Examples 2

• Equations for V1,V2 and V3
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