EXERCISES MODULE 1: DC ELECTRIC CIRCUITS

September 29, 2016

PROBLEM 1.1

For the circuit in Figure 1, obtain the equations needed to determine the currents of each branch of the circuit.

Figure 1

Result

$$\begin{cases} 0 = I_1 - I_2 + I_5 \\ 0 = -I_1 + I_3 - I_6 \\ 0 = -I_4 + I_5 + I_6 \\ E_1 - E_4 = R_1 \cdot I_1 - R_5 \cdot I_6 \\ E_3 = R_3 \cdot I_3 + R_4 \cdot I_4 + R_5 \cdot I_6 \\ E_2 + E_4 = R_2 \cdot I_2 - R_4 \cdot I_4 \end{cases}$$

PROBLEM 1.2

For the circuit of Figure 2:

- a) Determine the current of each branch of the circuit.
- b) Compute the potentials V_A, V_B and V_C

Figure 2

Data:
$$E_g = 10 \text{ V}; \quad R_g = \frac{1}{2} \Omega; \quad R_1 = 4 \Omega; \quad R_2 = R_3 = 2 \Omega$$

Result

a) $I_1 = I_2 = 2 \text{ A}$; $I_3 = 4 \text{ A}$

b) $V_A = 8 \text{ V}; \quad V_B = 0 \text{ V}; \quad V_C = 4 \text{ V}$

PROBLEM 1.3

Given the circuit in Figure 3:

a) Determine the power of the sources E_1 and E_2 .

b) Compute the power absorbed by resistors R_1 , R_2 and R_3 . Verify the power balance of the circuit.

c) Calculate the electric potential difference V_{AB} .

Figure 3

Data: $E_1 = 10 \text{ V}$; $E_2 = 5 \text{ V}$; $R_1 = 2 \Omega$; $R_2 = R_3 = 1 \Omega$

Result

a) $P_{E_1} = 30$ W. Delivered; $P_{E_2} = 5$ W. Delivered

b) $P_{R_1} = 18 \text{ W}; \quad P_{R_2} = 1 \text{ W}; \quad P_{R_3} = 16 \text{ W}$

$$\sum P_{deli} = \sum P_{abs} = 35 \text{ W}$$

c) $V_{AB} = -6 \text{ V}$

PROBLEM 1.4

For the circuit of Figure 4, calculate the power absorbed by resistors R_1 , R_4 and R_5

Figure 4

Data: $E_1 = 12 \text{ V}; \quad R_1 = 1 \Omega; \quad R_2 = 2 \Omega; \quad R_3 = R_4 = 4 \Omega; \quad R_5 = 8 \Omega; \quad R_6 = 6 \Omega; \quad R_7 = 2 \Omega$

Result

 $P_{R_1} = 16 \text{ W}; \quad P_{R_4} = 4 \text{ W}; \quad P_{R_5} = 8 \text{ W}$

PROBLEM 1.5

Given the circuit of Figure 5:

- a) Compute the potentials of points A and B
- b) Determine the power of the sources, and the power absorbed by the resistors. Verify the power balance.

Figure 5

Data: $E_1 = 10 \text{ V}$; $E_2 = 2 \text{ V}$; $E_3 = 4 \text{ V}$; $R_1 = 8 \Omega$; $R_2 = R_3 = 4 \Omega$

Result

a) $V_A = 8 \text{ V}; \quad V_B = 0 \text{ V}$

b) $P_{E_1} = 10 \text{ W}$; $P_{E_2} = -1 \text{ W}$ absorbs; $P_{E_3} = 4 \text{ W}$; $P_{R_1} = 8 \text{ W}$; $P_{R_2} = 1 \text{ W}$; $P_{R_3} = 4 \text{ W}$

PROBLEM 1.6

For the circuit in Figure 6:

- a) Compute the potentials of points A, B and C.
- b) Determine the power of the sources E_1 and E_2 , and the power absorbed by the resistor R_1 .

Figure 6

Data:

$$E_1 = E_2 = 10 \text{ V}; \quad E_3 = 3 \text{ V}; \quad E_4 = 4 \text{ V}; \quad R_1 = 1 \Omega; \quad R_2 = 2 \Omega; \quad R_3 = 3 \Omega; \quad R_4 = 4 \Omega; \quad R_5 = 8 \Omega; \quad R_6 = 8 \Omega; \quad R_8 = 10 \Omega; \quad R_8$$

Result

- a) $V_A = -23 \text{ V}; \quad V_B = 0 \text{ V}; \quad V_C = 4 \text{ V}$
- b) $P_{E_1} = 100 \text{ W}; \quad P_{E_2} = 0 \text{ W}; \quad P_{R_1} = 100 \text{ W}$

PROBLEM 1.7

Given the circuit in Figure 7:

- a) Calculate the power absorbed by the resistors R_1 , R_2 and R_3 .
- b) Calculate the power of the sources E_1 , E_2 and E_3 .
- c) Determine the energy saved by L_1 , L_2 , C_1 , C_2 and C_3 .

Figure 7

Data:

$$E_1=1~{\rm V}; \quad E_2=2~{\rm V}; \quad E_3=3~{\rm V}; \quad R_1=1~\Omega; \quad R_2=R_3=2~\Omega;$$
 $C_1=1~\mu{\rm F}; \quad C_2=1~\mu{\rm F}; \quad C_3=3~\mu{\rm F}; \quad L_1=2~{\rm mH}; \quad L_2=4~{\rm mH}$

Result

a)
$$P_{R_1} = 1 \text{ W}$$
; $P_{R_2} = 2 \text{ W}$; $P_{R_3} = 0 \text{ W}$

b)
$$P_{E_1} = 1 \text{ W}; \quad P_{E_2} = 2 \text{ W}; \quad P_{E_3} = 0 \text{ W}$$

c)
$$W_{L_1} = 1 \text{ mJ}$$
; $W_{L_2} = 2 \text{ mJ}$; $W_{C_1} = \frac{1}{2} \mu \text{J}$; $W_{C_2} = 9 \mu \text{J}$; $W_{C_3} = 24 \mu \text{J}$

PROBLEM 1.8

For the following circuit 8:

- a) Determine the power absorbed by resistors R_1 , R_2 , R_3 and R_4 .
- b) Calculate the power of the sources E_1 and E_2 .
- c) Compute the energy saved by L_1 , L_2 , C_1 and C_2 .

Figure 8

Data:

$$\begin{split} E_1 = 2 \; \mathrm{V}; \quad E_2 = 5 \; \mathrm{V}; \quad R_1 = 4 \; \Omega; \quad R_2 = R_3 = 3 \; \Omega; \quad R_4 = 6 \; \Omega \\ C_1 = 7 \; \mathrm{nF}; \quad C_2 = 2 \; \mathrm{nF}; \quad L_1 = 8 \; \mu \mathrm{H}; \quad L_2 = 2 \; \mu \mathrm{H} \end{split}$$

Result

a)
$$P_{R_1} = 1 \text{ W}$$
; $P_{R_2} = 3 \text{ W}$; $P_{R_3} = \frac{4}{3} \text{ W}$; $P_{R_4} = \frac{2}{3} \text{ W}$

b)
$$P_{E_1} = 1 \text{ W}; \quad P_{E_2} = 5 \text{ W}$$

c)
$$W_{L_1} = 1 \mu J$$
; $W_{L_2} = 1 \mu J$; $W_{C_1} = 0 J$; $W_{C_2} = 25 \text{nJ}$

PROBLEM 1.9

Determine the equivalent resistance for the circuits shown in Figure 9 when they are in DC:

Figure 9

Data:

$$R_1 = 1 \ \Omega; \quad R_2 = R_3 = 2 \ \Omega; \quad C_1 = 1 \ \mu \mathrm{F}; \quad L_1 = 2 \ \mathrm{mH}$$

Result

PROBLEM 1.10

For the circuit in Figure 10 express the equations to obtain $v_1(t)$, $v_2(t)$, and $v_3(t)$ as a function of the currents $i_1(t)$ and $i_2(t)$.

Figure 10

Result

$$\begin{cases} v_1(t) = L_1 \cdot \frac{di_1(t)}{dt} - M \cdot \frac{di_1(t)}{dt} - M \cdot \frac{di_2(t)}{dt} \\ v_2(t) = L_2 \cdot \frac{di_1(t)}{dt} + L_2 \cdot \frac{di_2(t)}{dt} - M \cdot \frac{di_1(t)}{dt} \\ v_3(t) = -L_3 \cdot \frac{di_2(t)}{dt} \end{cases}$$