EXERCISES MODULE 3: SOURCES AND METHODS OF ANALYSIS. THEVENIN's AND NORTON's EQUIVALENT SOURCES.

November 22, 2016

PROBLEM 3.1

Given the circuit of Figure [1]
a) Determine the equations that allow to solve the circuit using the mesh analysis method.
b) Determine the equations that allow to solve the circuit using the nodal analysis method.

Figure 1

PROBLEM 3.2

Given the circuit in Figure 2,
a) Determine the system of equations that allows to solve the circuit using the mesh analysis method.
b) Determine the system of equations that allows to solve the circuit using the nodal analysis method.
c) Solve the circuit using the equations obtained in a), and determine the potential of points A, B and $\mathrm{C}\left(V_{A}, V_{B}, V_{C}\right)$.
d) Solve the circuit using the equations obtained in b), and determine the potential of points A, B and $\mathrm{C}\left(V_{A}, V_{B}, V_{C}\right)$.
e) Do these potentials coincide independently of the method of analysis used to compute them?

Data:

$$
\begin{array}{cc}
E_{g_{1}}=1 \mathrm{~V} ; & E_{g_{2}}=1 \mathrm{~V} \\
R_{1}=1 \Omega ; & R_{2}=1 \Omega \\
R_{3}=1 \Omega ; & R_{4}=2 \Omega \\
C_{1}=1 \mu \mathrm{~F} ; & L_{1}=1 \mathrm{mF}
\end{array}
$$

Figure 2

Result

$V_{A}=0 \mathrm{~V}, V_{B}=0 \mathrm{~V}, V_{C}=1 \mathrm{~V}$

PROBLEM 3.3

Given the circuit in Figure 3.
a) Determine the system of equations that allows to solve the circuit using the mesh analysis method.
b) Determine the system of equations that allows to solve the circuit using the nodal analysis method.
c) Solve the circuit using the equations obtained in a), and determine the difference of potentials between points A and B, $V_{A B}$.
d) Solve the circuit using the equations obtained in b), and determine the difference of potentials between points A and B, $V_{A B}$.
e) Do these potentials coincide independently of the method of analysis used to compute them?

Data:

$$
\begin{array}{ll}
E_{g_{1}}=3 \mathrm{~V} ; & I_{g_{1}}=6 \mathrm{~A} \\
R_{1}=1 \Omega ; & R_{2}=2 \Omega \\
R_{3}=3 \Omega ; &
\end{array}
$$

Figure 3

Result

$V_{A B}=-3 \mathrm{~V}$

PROBLEM 3.4

Given the circuit in Figure 4 .
a) Determine the system of equations that allows to solve the circuit using the mesh analysis method.
b) Determine the system of equations that allows to solve the circuit using the nodal analysis method.
c) Solve the circuit using the equations obtained in a), and determine the difference of potentials between points B and $\mathrm{A}, V_{B A}$.
d) Solve the circuit using the equations obtained in b), and determine the difference of potentials between points B and $\mathrm{A}, V_{B A}$.
e) Do these difference of potentials coincide independently of the method of analysis used to compute them?

Data:

$$
\begin{array}{cc}
E_{g_{1}}=2+2 j \mathrm{~V} ; & I_{g_{1}}=4 j \mathrm{~A} \\
Z_{1}=j \Omega ; & Z_{2}=1+j \Omega \\
Z_{3}=2-j \Omega ; & \alpha=2
\end{array}
$$

Figure 4

Result

$V_{B A}=3 j \mathrm{~V}$

PROBLEM 3.5

Given the circuit in Figure 5 .
a) Determine the system of equations that allows to solve the circuit using the mesh analysis method.
b) Determine the system of equations that allows to solve the circuit using the nodal analysis method.
c) Solve the circuit using the equations obtained in a), and determine the difference of potentials between points C and $\mathrm{D}, V_{C D}$.
d) Solve the circuit using the equations obtained in b), and determine the difference of potentials between points C and $\mathrm{D}, V_{C D}$.
e) Do these difference of potentials coincide independently of the method of analysis used to compute them?

Data:

$$
\begin{array}{cc}
E_{g_{1}}=2+j \mathrm{~V} ; & E_{g_{2}}=1-3 j \mathrm{~V} \\
Z_{1}=-j \Omega ; & Z_{2}=1 \Omega \\
Z_{3}=1 \Omega ; & I_{g_{1}}=j \mathrm{~A} \\
& \alpha=1 ;
\end{array}
$$

Figure 5

Result

$V_{C D}=2-2 j \mathrm{~V}$

PROBLEM 3.6

Given the circuit in Figure 6 6
a) Determine the system of equations that allows to solve the circuit using the mesh analysis method.
b) Determine the system of equations that allows to solve the circuit using the nodal analysis method.
c) Solve the circuit using the equations obtained in a), and determine the current $i_{x}(t)$.
d) Solve the circuit using the equations obtained in b), and determine the current $i_{x}(t)$.
e) Do the expressions for $i_{x}(t)$ coincide independently of the method of analysis used to obtain them?

Figure 6

$$
\begin{gathered}
e_{g_{1}}(t)=\cos \left(t-\frac{\pi}{2}\right) \mathrm{V} \\
e_{g_{2}}(t)=2 \cos (t) \mathrm{V} \\
e_{g_{3}}(t)=\cos \left(t+\frac{\pi}{2}\right) \mathrm{V} \\
i_{g_{1}}(t)=2 \cos \left(t+\frac{\pi}{2}\right) \mathrm{A} \\
i_{g_{2}}(t)=\cos \left(t-\frac{\pi}{2}\right) \mathrm{A} \\
R_{1}=1 \Omega \\
L_{1}=1 \mathrm{H} \\
\alpha=2 \Omega
\end{gathered}
$$

Result

$i_{x}(t)=2 \cos \left(t-\frac{\pi}{2}\right) \mathrm{A}$

PROBLEM 3.7

Given the circuit in Figure 7,
a) Determine the system of equations that allows to solve the circuit using the mesh analysis method.
b) Determine the system of equations that allows to solve the circuit using the nodal analysis method.
c) Solve the circuit using the equations obtained in a), and determine the voltage $v_{x}(t)$.
d) Solve the circuit using the equations obtained in b), and determine the voltage $v_{x}(t)$.
e) Do the expressions for $v_{x}(t)$ coincide independently of the method of analysis used to obtain them?
f) Compute the power of the source $\left.i_{g 1}(t)\right)$ and the power absorbed by L_{1} and R_{2}.

Data:

$$
\begin{array}{cc}
e_{g_{1}}(t)=\sqrt{2} \cos \left(t-\frac{\pi}{4}\right) \mathrm{V} & \\
e_{g_{2}}(t)=\cos \left(t+\frac{\pi}{2}\right) \mathrm{V} & \\
e_{g_{3}}(t)=\cos \left(t-\frac{\pi}{2}\right) \mathrm{V} & \\
i_{g_{1}}(t)=\cos (t) \mathrm{A} & \\
R_{1}=1 \Omega & R_{2}=1 \Omega \\
R_{3}=1 \Omega & C_{1}=1 \mathrm{~F} \\
L_{1}=1 \mathrm{H} & L_{2}=1 \mathrm{H} \\
\alpha=1 &
\end{array}
$$

Figure 7

Result

$$
v_{x}(t)=\frac{1}{\sqrt{2}} \cos \left(t-\frac{\pi}{4}\right) \mathrm{V} ; \quad P_{I_{g_{1}}}=\frac{3}{4} \mathrm{~W} ; \quad P_{Z_{L_{1}}}=0 \mathrm{~W} ; \quad P_{R_{2}}=\frac{1}{4} \mathrm{~W}
$$

PROBLEM 3.8

Given the circuit in Figure [8:
a) Determine the system of equations that allows to solve the circuit using the mesh analysis method.
b) Determine the system of equations that allows to solve the circuit using the nodal analysis method.
c) Solve the circuit using the equations obtained in a), and determine the difference of potentials between points A and B, $V_{A B}$.
d) Solve the circuit using the equations obtained in b), and determine the difference of potentials between points A and B, $V_{A B}$.
e) Do these difference of potentials coincide independently of the method of analysis used to compute them?
f) Compute the power of the source βV_{x} and the power absorbed by the impedance Z_{1}.

Data:

$$
\begin{array}{rlr}
E_{g_{1}}=2+2 j \mathrm{~V} ; & E_{g_{2}}=-1 \mathrm{~V} \\
I_{g_{1}}=2+j \mathrm{~A} ; & \\
Z_{1}=2 \Omega ; & Z_{2}=1+j \Omega \\
Z_{3}=2 \Omega ; & Z_{4}=-2 j \Omega \\
\beta=\frac{1}{2} \Omega^{-1} &
\end{array}
$$

Figure 8

Result

$V_{A B}=1 \mathrm{~V} ; \quad P_{\beta V_{x}}=\frac{17}{8} \mathrm{~W} ; \quad P_{Z_{1}}=\frac{1}{4} \mathrm{~W}$.

PROBLEM 3.9

Determine the Thevenin's equivalent source from terminals A and B for the circuit in Figure 9 .

Data:

$$
\begin{array}{cc}
E_{g_{1}}=4+3 j \mathrm{~V} ; & E_{g_{2}}=3 \mathrm{~V} \\
I_{g_{1}}=1 \mathrm{~A} ; & \\
Z_{1}=1 \Omega ; & Z_{2}=1-j \Omega \\
Z_{3}=1+j \Omega ; & Z_{4}=1+j \Omega \\
\alpha=1 \Omega &
\end{array}
$$

Figure 9

Result

$E_{T h}=5+j \mathrm{~V} ; \quad Z_{T h}=1+j \Omega$

PROBLEM 3.10

Determine the Thevenin's equivalent source from terminals A and B for the circuit in Figure 10 .

Data:

$$
\begin{array}{cc}
E_{g_{1}}=10 \sqrt{2} \cdot e^{-j \frac{\pi}{4}} \mathrm{~V} ; & I_{g_{1}}=\sqrt{2} \cdot e^{j \frac{\pi}{4}} \mathrm{~A} \\
Z_{g_{1}}=1+j \Omega ; & Z_{L}=j \Omega \\
\alpha=\frac{1}{2} ; & \beta=2
\end{array}
$$

Figure 10

Result

$E_{T h}=12-10 j \mathrm{~V} ; \quad Z_{T h}=1+2 j \Omega$

PROBLEM 3.11

Determine the Norton's equivalent source from terminals A and B for the circuit in Figure 11.

Data:

$$
\begin{array}{rlrl}
E_{g_{1}} & =2 j \mathrm{~V} ; \quad I_{g_{1}}=1 \mathrm{~A} \\
Z_{1} & =j \Omega ; \quad Z_{2}=2-j \Omega \\
\alpha & =1 \Omega & &
\end{array}
$$

Figure 11

Result

$$
I_{N}=\frac{-3+j}{5} \mathrm{~A} ; \quad Z_{N}=2-j \Omega
$$

PROBLEM 3.12

Determine the Thevenin's equivalent source from terminals A and B for the circuit in Figure 12 .

Data:

$$
\begin{array}{ccc}
E_{g_{1}}=j \mathrm{~V} ; & I_{g_{1}}=2 \mathrm{~A} ; \\
I_{g_{2}}=1 \mathrm{~A} & Z_{1}=\frac{1}{2} j \Omega \\
Z_{2}=j \Omega ; & Z_{3}=2 j \Omega \\
\alpha=1 ; & & \beta=2
\end{array}
$$

Figure 12

Result

$$
E_{T h}=\frac{j}{2} \mathrm{~V} ; \quad Z_{T h}=j \Omega
$$

PROBLEM 3.13

Determine the Norton's equivalent source from terminals A and B for the circuit in Figure 13 .

Data:

$$
\begin{array}{cc}
E_{g_{1}}=2 \mathrm{~V} ; & I_{g_{1}}=2 \mathrm{~A} \\
R_{1}=1 \Omega ; & R_{2}=1 \Omega \\
Z_{L}=j \Omega ; & \alpha=2 \\
Z_{C}=-j \Omega ; &
\end{array}
$$

Figure 13

Result

$$
I_{N}=2-4 j \mathrm{~A} ; \quad Z_{N}=j \Omega
$$

PROBLEM 3.14

For the circuit in Figure 14 :
a) Determine the Norton's equivalent source from terminals A and B towards the left.
b) Power absorbed by the load R_{L}.

Figure 14

Data:

$$
\begin{array}{rlrl}
E_{g_{1}} & =2 \mathrm{~V} ; \quad E_{g_{2}}=1-j \mathrm{~V} \quad I_{g_{1}}=j \mathrm{~A} ; \quad R_{L}=3 \Omega ; \quad R_{1}=R_{2}=R_{3}=R_{4}=1 \Omega ; \\
Z_{L}=j \Omega ; \quad Z_{C}=-j \Omega ; \quad \alpha=2 \Omega ; \quad \beta=2 \Omega^{-1}
\end{array}
$$

Result

a) $I_{N}=\frac{4+2 j}{5} ; \mathrm{A} \quad Z_{N}=(3+j) \Omega$.
b) $P_{R_{L}}=\frac{1}{3} \mathrm{~W}$

PROBLEM 3.15

For the circuit in Figure 15
a) Determine the Thevenin's equivalent source from terminals A and B towards the left.
b) Power absorbed by the load R_{L}.

Figure 15

Data:

$$
\begin{aligned}
L_{1} & =4 \mathrm{mH} ; \quad L_{2}=9 \mathrm{mH} ; \\
R_{L}=45 \Omega ; & R_{g}=200 \Omega ; \\
k & =\frac{1}{2}
\end{aligned}
$$

Result

a) $e_{T h}(t)=80 \cos \left(5 \cdot 10^{3} t\right) \mathrm{V} ; \quad Z_{T h}=45 j \Omega$
b) $P_{R_{L}}=\frac{320}{9} \mathrm{~W}$

PROBLEM 3.16

In the circuit shown in Figure 16 there is a perfect coupling between the two inductors.
a) Determine the Thevenin's equivalent source from terminals A and B towards the right.
b) Compute the power of the source $e_{g_{1}}(t)$.

Data:

$$
\begin{aligned}
e_{g_{1}}(t)=2 \sqrt{2} \sin \left(10^{3} t+\frac{\pi}{4}\right) \mathrm{V} ; & \\
e_{g_{2}}(t)=\sin \left(10^{3} t\right) \mathrm{V} ; & \\
R_{g_{1}}=2 \Omega ; & R_{g_{2}}=1 \Omega \\
L_{1}=L_{2}=1 \mathrm{mH} ; & k=1
\end{aligned}
$$

Figure 16

Result

a) $e_{T H}(t)=\sqrt{2} \sin \left(10^{3} t+\frac{\pi}{4}\right) \mathrm{V} ; \quad Z_{T H}=2+2 j \Omega$
b) $P_{E_{g_{1}}}=\frac{4}{10} \mathrm{~W}$

