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ABSTRACT 
 
A novel experimental approach for the calculation of stress intensity factors from the analysis of photoelastic 
images is presented.  The method is derived from the well-established six image phase-stepping method but 
only two images are used to obtain the retardation angle. To calculate KI and KII a set of discrete data points are 
collected from the map of retardation angle in the region surrounding the crack tip. A theoretical description of 
the spatial variation of retardation angle is derived from Westergaard’s model and fitted to the data via an error 
function using a least squares fitting procedure. In this way, the necessity of unwrapping is avoided and the 
consequential difficulties and errors are eliminated. To demonstrate the efficacy of the proposed approach, 
stress intensity values have been obtained from photoelastic images captured during a test conducted using a 
polycarbonate Center-Cracked Tension (CCT) specimen. The results are very promising, showing a high level 
of agreement with those predicted from theory. 
 
Keywords: Fatigue crack, stress intensity factor, photoelasticity, image analysis 
 
 
INTRODUCTION 
 
Accurate crack detection and fatigue damage assessment in industrial components have focused the attention 
of many researchers for a long time. In this context, the ability to make reliable stress measurements at a crack 
tip is an essential part in understanding the fatigue process. 
 
Since Post and Wells [1, 2] first showed the potential of photoelasticity for fracture mechanics applications in the 
1950’s, many authors have focused their research on applying fracture mechanics to structural analysis. One 
major step forward in the calculation of the stress intensity factor from the analysis of photoelastic images was 
made by Sanford and Dally [3] with their Multi-Point Over-Deterministic Method (MPODM). Since then, this 
approach has been extensively used to report stress intensity factor results for a multiplicity of fracture 
mechanics problems. Moreover, the method has been successfully extended to other experimental techniques 
[4-5] as a standard and straightforward methodology for calculating fracture parameters. 
 
Although the MPODM is robust and simple-to-use, it suffers from a substantial limitation in that the absolute 
value of the isochromatic fringe order must be known at all of the data points utilised in the analysis. This implies 
either the use of points from the centres of integer or half-order fringes obtained from dark-field or light-field 
circular polariscope respectively with manual identification of the fringe order [6]; or the use of an unwrapping 
algorithm [7]. The latter approach has become more popular recently; however both approaches can be difficult 
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to implement successfully in regions of high magnitude and gradient of stress and hence fringe density around a 
crack.  This is particularly problematic for cracks in complex industrial components when the operator must have 
some skill and previous knowledge to successfully infer the stress intensity factor. 
 
Improvements in computer technology have made it possible to develop image processing methods that have 
lead to, what nowadays is known as, digital photoelasticity. Different image processing techniques have made it 
possible to obtain full-field maps of stresses in components by processing photoelastic images [7]. In particular, 
phase-stepping methods are amongst the most extensively used in fringe image processing to extract phase 
information. By employing unwrapping techniques, continuous fringe order maps can be obtained from periodic 
distributions of fringe order, or retardation, evaluated from the phase data. In this way, unwrapping techniques 
have increased the potential and utility of the initial method proposed by Sanford and Dally [3]. Thus data for 
use in the MPODM can be sampled from anywhere in the image or even the whole image could be utilised.  
Clearly the process of unwrapping prior to applying the MPODM adds both time and complexity to the 
evaluation of a stress intensity factor; hence it would advantageous if wrapped fringe or relative retardation data 
could be used to solve for stress intensity factors.  
 
In this paper, a new method for calculating stress intensity factors from the analysis of isochromatic data is 
proposed. The method is based on the determination of the distribution of the relative retardation angle, by 
combining two photoelastic images, and comparing it with corresponding distribution obtained from a theoretical 
model. In this way, the unwrapping process is avoided as discussed above, and data points can be collected 
from the whole image. The results demonstrate that it is a very robust method that provides accurate stress 
intensity factor values in just a few seconds. To show the potential of the proposed methodology, the method 
has been used to calculate the stress intensity factor at increasing load steps using a polycarbonate Centred-
Cracked-Tension (CCT) specimen with a 10 mm crack. The results show a high level of agreement with those 
predicted from theory, demonstrating the viability and potential of the proposed methodology.  
 
 
METHODOLOGY AND EXPERIMENTAL APPROACH 
 
The proposed approach is based on the calculation of the retardation from the analysis of two photoelastic 
images. Two images are collected from a circular polariscope set up for dark-field and light-field. In these 
arrangements the light intensity recorded by a digital camera viewing the polariscope can be described by:  
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where iv is the intensity emerging when all the axis of the polariscope and specimen are parallel, im takes 
account stray light [8]. According to equation (1), the retardation angle from experiment, αexp can be obtained 
experimentally by subtracting image 1 from image 2; therefore: 
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where N denotes the fringe order. 
 
Hence it is also possible to calculate the retardation angle, α using any one of a number of models for the stress 
field around a crack tip that are available in the literature [9]. In this case, the Westergaard model [10] has been 
employed to illustrate the method as shown in equation 3. 
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where f is the material fringe constant, t is the length of the light path in the photoelastic material r and θ are 
polar coordinates in a conventional polar system centered at the crack tip with x being in the direction of the 
crack growth. 
 
In the proposed method, a mathematical fit of the theoretical distribution of retardation angle, αtheo is performed 
to the experimental data, αexp and hence KI and KII are inferred. The procedure has been divided into six steps 
(figure 1) that are described in the following paragraphs. 
 
 

1. Obtain αexperimental                        
(combine image 1 and 2) 

2. Select the crack tip and 
remove the crack tip plastic 

area by applying a mask 

 
 
Figure I. Flow chart illustrating the steps of the proposed algorithm for calculating the stress intensity factor from 

the analysis of isochromatic data. 
 

 
Initially, the experimental retardation angle is obtained by combining images 1 and 2 as previously indicated 
(step 1). Subsequently, the crack tip position must be identified by visually inspecting the resultant image (step 
2).  
To ensure the validity of the adopted mathematical model, based on linear elastic fracture mechanics, a mask 
must be applied in the near-tip region and along the flanks. The purpose is to remove from the analysis all of the 
plastic zone around the crack tip. After that, a set of data points are sampled in the region surrounding the crack 
tip (step 3). The size of the region in which valid data exists was defined by Nurse and Patterson [6] as an 

Is the error smaller that the 
specified tolerance?

Change KI, KII, σox, and 
repeat steps 4, 5, 6 and 7 

End 

4. Obtain αtheoretical                       
αtheoretical = f (KI, KII, σox, r,θ ) 

5. Wrap the resultant image 
using a virtual polariscope 

6. Define and error function      
g = αexperimental - αtheoretical

7. Minimize g and obtain    
KI, KII and σox

4 
3. Collect data points around 

the crack tip 



annulus of inner radius equal to ten times the crack tip radius and outer radius of approximately 0.4 times the 
crack length. However, in the proposed method a rectangular area within these limits has been adopted.  
 
The coordinates of the sampled data are then employed to evaluate equation (3) and obtain a theoretical image 
for the retardation angle according to Westergaard model (step 4). To do this, initial values for KI and KII have to 
be defined in this step. The resultant image is continuous since it is directly obtained from the theoretical fringe 
order. Nevertheless, the experimental image is wrapped and consequently the two distributions cannot be 
compared directly. To overcome this problem the theoretical distribution is wrapped by using a Matlab routine 
(step 5) based on Jones matrices to simulate a virtual polariscope [11]. In this way, a map of αtheo is generated 
and can be compared directly to the experimental data for αexp. To calculate KI, KII and σox an error function is 
defined: 
 theog αα −= exp                                           (4) 
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A least squares fit is performed (step 6); since, the resultant system of equations is not linear it has to be solve 
in an iterative way. For this purpose the Downhill Simplex method was adopted [12].  
 
Finally, KI and KII values are obtained. The quality of the fitting is assessed by two statistical values, namely the 
mean and the variance of the least-squared difference between the theoretical and experimental values of 
retardation angle, α at the sampled data points. 
 
 
EXPERIMENTAL SETUP 
 
To assess the quality of the proposed methodology experiments were conducted using a 2 mm thick 
polycarbonate Centre-Cracked-Tension (CCT) specimen with an initial 10 mm centre notch.  A crack was 
created using a razor blade. 
 
To load the specimen, a 30 kN electro-mechanical testing machine (INSTRON 5567) controlled by a desktop 
computer (Dell - Pentium 4 Intel processor) was employed. During the test, photoelastic images were captured 
at 100 N increments of load from 0 to 700 N (figure 2).  

200N 400N 600N 

Figure 2. Grey-scale maps of the retardation calculated using the proposed methodology (eq. 2) from 
photoelastic images captured at 200 N, 400 N and 600 N for 2a = 10 mm. 

rad

 



For this purpose, a transmission polariscope with a monochromatic light source was employed. To capture the 
images a CCD camera Panasonic VW-BP100 controlled by a laptop (DELL - Centrino Intel Mobile Technology 
processor) using PC-MCIA video card (Imperx Inc. VCE-B5A01) was used. In addition, a 70-210 mm zoom lens 
(Tamron model 58A) was employed to increase the spatial resolution in the region of the crack tip. 
 
Subsequently, images were analyzed using a Matlab® computer program implementing the steps described in 
the previous section and figure 2. As a result, values of KI, KII and were obtained (figure 3) and compared with 
those predicted from theory [9]:  
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RESULTS AND DISCUSSIONS 
 
Figure 3 shows experimental values of KI and KII inferred from photoelastic images using the procedure 
described previously and compared with those predicted by theory using equation (6).  
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Figure 3. KI and KII inferred using the proposed methodology from photoelastic images as a function of load for 

2a = 10 mm.  
 
Experimental results show an excellent level of agreement with those predicted from theory. There is some 
scatter in the results which could be attributed to the presence of noise in the images. Another possible reason 
could be errors introduced when locating the crack tip position, since this was achieved manually by direct 
observation of the fringe image. Nevertheless in all the cases, the quality of the fitting is characterised by very 
small values for the normalized mean error (less than 6.25×10-3) and the variance (less than 2.4×10-3). This is 
also supported by the data in figure 4 which shows a comparison between the experimental retardation and the 
retardation obtained from the Westergaard model using the values of KI and KII obtaining by performing the 
mathematical fitting. As can be observed the images are practically identical with just localised small 
differences. These differences are reasonable since the adopted analytical solution is based on linear elastic 
fracture mechanics and assumes a crack in an infinite plate. 
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Figure 4. Maps of the photoelastic retardation fro  10 mm crack a) from experiment by combining ligh nd 

dark-field circular polariscope images, and b) c
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CONCLUSIONS 
 
A new method for calculating stress intensity facto
The method makes it possible to obtain accurate r
images at different orientations of the analyzer. T
phase to calculate the stress intensity factors hen
computational and experimentally efficient. The a
CCT specimen. Results show excellent agreemen
the methodology for other engineering problems.  
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