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Abstract. This paper presents a novel bio-inspired algorithm to tackle complex op-
timization problems: the Coral Reefs Optimization (CRO) algorithm. The CRO
algorithm artificially simulates a coral reef, where different corals (namely, solutions
to the optimization problem considered) grow and reproduce in coral colonies, fight-
ing by choking out other corals for space in the reef. This fight for space, along
with the specific characteristics of the corals’ reproduction, produces a robust meta-
heuristic algorithm, shown to be powerful for solving hard optimization problems. In
this research the CRO algorithm is detailed and tested in several continuous and dis-
crete optimization problems, obtaining advantages over other existing meta-heuristic
techniques. The obtained results confirm the excellent performance of the proposed
algorithm.
Keywords: Coral Reefs Optimization algorithm, optimization problems, modern
meta-heuristics, bio-inspired algorithms.

1 Introduction

In the last years, huge research efforts have been conducted towards solving
hard optimization problems, by well balancing the trade-off between the com-
plexity incurred by the utilized method and the optimality of the produced
solutions. These problems, often characterized by search spaces of high dimen-
sionality (either discrete or continuous), non-linear objective functions and/or
stringent constraints, arise frequently in Science and Engineering applications.
In such fields, classical optimization approaches do not provide in general good
solutions to these problems, or are just not applicable, due to the unmanageable
search space structure or its huge size.

In this context, modern optimization heuristics and meta-heuristics have
been lately the core of research, aimed at solving the aforementioned lack of ef-
ficient methods. A good number of such algorithms are bio-inspired techniques
such as evolutionary algorithms (EA), which includes a whole family of tech-
niques such as Genetic Algorithms [1], Evolutionary Strategies [2], Evolutionary
Programming [3], Differential Evolution [4], among others. These schemes are
based on concepts borrow from natural evolution and survival of the fittest in-
dividuals in Nature. Likewise, Ant Colonies Optimization (ACO) [5] are based
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on the social behavior of ants, Particle Swarm Optimization (PSO) approaches
[6] are in essence elegant algorithms specially well-suited for continuous opti-
mization problems. They imitate the behavior of birds flocks or fish schools.
There have been more research activity on bio-inspired meta-heuristics, with
approaches such as Artificial Bee Colony [7], the Invasive Weed Optimization
Algorithm (IWO), [8], based on weed growth and their invasive properties,
or the so-called Cuckoo search approach [9], built upon the reproduction and
breeding of the cuckoo bird, among others.

In this paper we present a novel bio-inspired meta-heuristic for optimiza-
tion problems, which will be hereafter coined as the Coral Reefs Optimization
(CRO) algorithm. The CRO algorithm is based on an artificial simulation of
the process of coral reefs’ formation and reproduction. During this process,
the CRO algorithm emulates different phases of coral reproduction and fight
for space in the reef, which ultimately renders an efficient algorithm for solving
difficult optimization problems. The proposed CRO approach can be regarded
as a cellular-type evolutionary scheme, with superior exploration-exploitation
properties thanks to the particularities of the emulated reef structure and coral
reproduction. The performance of the proposed approach has been tested in
different benchmark problems obtaining very good results in comparison with
alternative approaches in the literature.

The rest of this article is structured as follows: for the sake of self-completeness
of the manuscript, the next section provides an introduction to coral reefs and
corals’ structure and reproduction. Next, Section 2 presents the CRO algo-
rithm in detail, including an analysis of similarities and differences with other
existing meta-heuristics. Section 3 shows the performance of the CRO algo-
rithm in different optimization problems. Finally, Section 4 ends the paper by
giving some concluding remarks.

2 The Coral Reefs Optimization algorithm

The CRO is a novel meta-heuristic approach based on corals’ reproduction and
coral reefs formation. Basically, the CRO is based on the artificial modeling of
a coral reef, Λ, consisting of a N ×M square grid. We assume that each square
(i, j) of Λ is able to allocate a coral (or colony of corals) Ξi,j , representing
a solution to a given optimization problem, which is encoded as a string of
numbers in a given alphabet I. The CRO algorithm is first initialized at
random by assigning some squares in Λ to be occupied by corals (i.e. solutions
to the problem) and some other squares in the grid to be empty, i.e. holes
in the reef where new corals can freely settle and grow in the future. The
rate between free/occupied squares in Λ at the beginning of the algorithm is
an important parameter of the CRO algorithm, which is denoted as rho, and
note that 0 < ρ0 < 1. Each coral is labeled with an associated health function
f(Ξij) : I → R, that represents the problem’s objective function. The CRO is
based on the fact that reef will progress, as long as healthier (stronger) corals
(which represent better solutions to the problem at hand) survive, while less
healthy corals perish.
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After the reef initialization described above, a second phase of reef forma-

tion is artificially simulated in the CRO algorithm: a simulation of the corals’
reproduction in the reef is done by sequentially applying different operators.
This sequential set of operators is then applied until a given stop criteria is met.
Several operators to imitate corals’ reproduction are defined, among them: a
modeling of corals’ sexual reproduction (broadcast spawning and brooding), a
model of asexual reproduction (budding), and also some catastrophic events in
the reef, i.e. polyps depredation. After the sexual and asexual reproduction,
the set of larvae formed (new solutions to the problem), try to locate a place to
grow in the reef. It could be in a free space, or in an occupied once, by fighting
against the coral actually located in that place. If larvae are not successful in
locate a place to grow in a given number of attempts, they are depredated in
this phase. This second phase of the CRO can be detailed as follows:

1. Broadcast Spawning (external sexual reproduction): the modeling of coral
reproduction by broadcast spawning consists of the following steps:

1.a. In a given step k of the reef formation phase, select uniformly at random
a fraction of the existing corals ρk in the reef to be broadcast spawners.
The fraction of broadcast spawners with respect to the overall amount
of existing corals in the reef will be denoted as Fb. Corals that are
not selected to be broadcast spawners (i.e. 1 − Fb) will reproduce by
brooding later on, in the algorithm.

1.b. Select couples out of the pool of broadcast spawner corals in step k.
Each of such couples will form a coral larva by sexual crossover, which
is then released out to the water. Note that, once two corals have been
selected to be the parents of a larva, they are not chosen anymore in
step k (i.e. two corals are parents only once in a given step). These
couple selection can be done uniformly at random or by resorting to
any fitness proportionate selection approach (e.g. roulette wheel).

2. Brooding (internal sexual reproduction): as previously mentioned, at each
step k of the reef formation phase in the CRO algorithm, the fraction
of corals that will reproduce by brooding is 1 − Fb. The brooding mod-
eling consists of the formation of a coral larva by means of a random
mutation of the brooding-reproductive coral (self-fertilization considering
hermaphrodite corals). The produced larva is then released out to the
water in a similar fashion than that of the larvae generated in step 1.b.

3. Larvae setting: once all the larvae are formed at step k either through
broadcast spawning (1.) or by brooding (2.), they will try to set and grow
in the reef. First, the health function of each coral larva is computed.
Second, each larva will randomly try to set in a square (i, j) of the reef.
If the square is empty (free space in the reef), the coral grows therein no
matter the value of its health function. By contrast, if a coral is already
occupying the square at hand, the new larva will set only if its health
function is better than that of the existing coral. We define a number κ of
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attempts for a larva to set in the reef: after κ unsuccessful tries, it will be
depredated by animals in the reef.

4. Asexual reproduction: in the modeling of asexual reproduction (budding
or fragmentation), the overall set of existing corals in the reef are sorted
as a function of their level of healthiness (given by f(Ξij)), from which a
fraction Fa duplicates itself and tries to settle in a different part of the reef
by following the setting process described in Step 3. Note that a maximum
number of identical corals (µ) are allowed in the reef.

5. Depredation in polyp phase: corals may die during the reef formation phase
of the CRO algorithm. At the end of each reproduction step k, a small
number of corals in the reef can be depredated, thus liberating space in the
reef for next coral generation. The depredation operator is applied with a
very small probability Pd at each step k, and exclusively to a fraction Fd

of the worse health corals in Λ. For the sake of simplicity in the parameter
setting of the CRO algorithm, the value of this fraction may be set to
Fd = Fa. Any other assignment may also apply provided that Fd +Fa ≤ 1
(i.e. no overlap between the asexually reproduced and the depredated coral
sets).

3 Experiments and Numerical Results

In this paper we carry out a first performance assessment of the proposed CRO
algorithm in different test problems. Specifically, different well-known contin-
uous and discrete benchmark problems are under consideration: continuous
analytical functions and several instances of the Max-Ones and 3-bit Deceptive.

We have selected other meta-heuristic algorithms for comparison: Evolu-
tionary Algorithms, Genetic Algorithms (EA and GA, [1]) and Harmony Search
(HS, [10]), which have obtained excellent results in a wide range of optimiza-
tion problems during the last years. Regarding the continuous benchmark
problems, we have compared the results obtained by the CRO in the same
problems tackled in [11].

Following this rationale, the encoding strategy used to represent the pro-
duced solutions for the aforementioned problems is set identical for all the
algorithms under comparison. Specifically, real encoding has been adopted for
the continuous benchmark problems, whereas the Max Ones and 3-bit Decep-
tive problems resort to standard binary encoding. On the other hand, values of
all parameters controlling the CRO approach have been set to be comparable
to that of its counterparts tested in every benchmark function. Therefore we
have kept the number of function evaluations constant for all the compared
algorithms in Maxones (15000), whereas for the 3-bit Deceptive problem the
total number of function evaluations is set to 50000 for GA and HS, and 30000
for the proposed CRO. In the continuous benchmark functions, we have set the
number of function evaluations to be comparable with the results in [11]. For
every simulation instance, 30 executions of each algorithm have been launched
so as to obtain well-sampled performance statistics (best, average and standard
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deviation of the metric after all iterations are done). Note that the size of the
population – N ×M for CRO, population length L for the GA, and harmony
memory size HM for HS – have been set equal for all the experiments for the
sake of fairness in the comparison of the algorithms: in the Max Ones problem
N × M = 5 × 10, L = 50 and HM = 50 and in the 3-bit Deceptive problem
N ×M = 10 × 10, L = 100 and HM = 100. The CRO parameters Fb and ρ
has been set to Fb = 0.9 and ρ = 0.7, unless otherwise stated in the discussion
on the specific simulated application.

3.1 CRO Evaluation in Continuous Benchmark Problems

This first round of experiments includes four well-known benchmark functions,
on which the proposed CRO is comparatively assessed with respect to different
hybrid evolutionary algorithms described in [11]. In these experiments we have
incorporated Gaussian and Cauchy mutations [3] in the internal reproduction
(brooding) of the corals in order to accommodate the corresponding operator
to the real encoding of the solutions. In the Gaussian mutation we have estab-
lished a fixed standard deviation σ = (max−min)/100, where max and min
are the maximum and minimum values that each component of the solution
can take, whereas in the Cauchy mutation the value of the τ parameter has
been fixed to 1 following the guidelines in [3]. The rest of operators in the CRO
are the ones shown in Section 2.

Table 1 lists the results obtained by three different versions of the CRO
(with Gaussian, Cauchy and Gaussian-Cauchy internal reproduction) in the
benchmark functions tackled in this first round of experiments. Also included
are the results for different versions of the hybrid evolutionary algorithm pro-
posed in [11], labelled as Hybrid Adaptive Evolutionary Algorithm (HAEA) in
what follows. It is straightforward to note that the CRO approach is able to
obtain better results than the different versions of HAEA consistently – and
with statistical significance positively checked through Kruskal-Wallis tests –
in all the functions under consideration. The inclusion of both Gaussian and
Cauchy mutations in the brooding coral reproduction (always maintaining the
number of functions evaluations) appears to improve the performance of the
CRO solver.

3.2 CRO Evaluation in Discrete Benchmark Problems

The first discrete benchmark problem considered is the well-known Max Ones
problem, often used in a number of previous works aimed at evaluating different
approaches of genetic algorithms (e.g. see [?,11] and references therein). This
optimization problem is defined in a binary search space S = {0, 1}n, where n
stands for the dimension of the space. The One Max problem is then defined
as

max
x∈S

f(x) =
100

n

n∑
i=1

xi [%]. (1)
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Table 1. Results (mean/standard deviation) obtained in the different continuous
benchmark functions tested.

Algorithm Rosenbrock Schwefel Rastrigin Griewank

CRO (G) 7.0 · 10−5/5.0 · 10−6 1.3 · 10−4/2.0 · 10−6 7.1 · 10−3/3.0 · 10−3 0.22/0.05
CRO (C) 7.2 · 10−5/5.6 · 10−6 1.3 · 10−4/1.6 · 10−6 6.7 · 10−3/2.3 · 10−3 0.03/0.02

CRO (G+C) 2.3 · 10−5/1.0 · 10−6 1.3 · 10−4/1.4 · 10−6 4.3 · 10−3/1.5 · 10−3 0.05/0.02
HAEA (XUG) 7.0 · 10−4/1.0 · 10−5 5.6 · 10−3/0.01 0.05/0.02 0.055/0.03
HAEA (XU) 4.1 · 10−3/4.0 · 10−3 1.3/0.93 0.24/0.15 0.5/0.2
HAEA (XG) 1.3 · 10−3/3.6 · 10−3 140.5/123.7 7.7/3.2 0.05/0.02
HAEA (GU) 1.4 · 10−4/2.5 · 10−3 201.9/81.2 6.3/1.4 1.6/0.38

Despite the evident simplicity of its definition, this problem is challenging for
optimization algorithms when dealing with large values of the space dimension-
ality n.

Table 2 summarizes the results (maximum, average and standard deviation)
obtained by CRO, GA and HS in Max Ones instances of varying size from
n = 50 to n = 500. As one may expect, in the scenarios of smallest dimension
all the utilized heuristic approaches are able to obtain the optimum solution
(100%) in every run of the algorithm. However, when the dimensions of the
simulated problem increase, the differences between the CRO and the other
tested algorithms become more significant. Specially remarkable is the fact
that the CRO obtains the best value in all the instances with a very high
probability (over 99% of the times in which the algorithm was run). HS also
obtains good solutions, but notably worse than the GA even in the smallest
instances. By contrast, the CRO clearly dominates GA and HS, specially in
the largest Max Ones instances.

Table 2. Results obtained by CRO, GA and HS in Max Ones problems of increasing
size. The results are shown in best/average/standard deviation over 30 runs of the
algorithms.

n CRO GA HS

50 100/100/0 100/100/0 100/100/0
100 100/100/0 100/100/0 98/95.67/0.92
150 100/100/0 100/100/0 94.67/90.84/1.13
200 100/99.98/9.12 · 10−4 100/99.93/0.17 90/87.32/0.88
250 100/99.97/7.3 · 10−4 100/99.81/0.25 86.80/84.64/1.04
300 100/99.96 /8.45 · 10−4 100/99.61/0.39 83.67/82.0700/0.62
350 100/99.96/9.8 · 10−4 100/99.21/0.46 81.4300/80.03/0.71
400 100/99.95/7.3 · 10−4 99.50/98.67/0.58 79.50/78.45/1.04
450 100/99.93/0.13 99.55/98.11/0.67 78.67/76.97/0.99
500 100/99.92/0.1 98.60/97.04/0.75 78/75.99/0.69
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The second discrete benchmark problem addressed is the maximization of

the aforementioned 3-bit Deceptive function, which has been previously utilized
to evaluate different improvements in genetic and evolutionary heuristics [11].
The 3-bit deceptive function is a binary optimization problem defined in blocks
of 3 bits. Each 3-bit block is assigned a value according to Table 3. The
optimization of the function is known to be computationally hard for heuristic
algorithms, since the 111 block (optimum since it is assigned the highest value)
is “surrounded” by low-valued blocks of two 1s (i.e. with small Hamming
distance with respect to 111). Different size functions (integer multiple of 3)
are considered in this study, i.e. n = {15, 30, 45, 60, 75, 90, 105, 120}.

Table 4 shows the results obtained by the CRO in the considered 3-bit De-
ceptive functions, and its comparison to those of HS and GA. In this problem
the CRO clearly obtains the best results among all the compared algorithms.
Indeed, it is able to obtain the optimum (maximum) value in all the instances
and in almost every executed run. The performance of the alternative algo-
rithms degrades significantly in the largest instances, though in the smallest
ones the GA is able to obtain the optimum value.

Table 3. Value assignment in the considered 3-bits Deceptive function.

Groups of 3 bits Value

1 1 1 80
0 0 0 70
0 0 1 50
0 1 0 49
1 0 0 30
1 1 0 3
1 0 1 2
0 1 1 1

Table 4. Results obtained by CRO, HS and GA in the considered 3-bit Deceptive
instances. The results are shown in best/average/standard deviation over 30 runs of
the algorithms.

n CRO HS GA Upper Bound

15 400/400/0 400/399.66/1.82 400/400/0 400
30 800/800/0 800/792/8.05 800/795/6.82 800
45 1200/1200/0 1190/1159/14.93 1200/1179.3/13.37 1200
60 1600/1600/0 1560/1517.3/21.96 1590/1562.70/18.74 1600
75 2000/2000/0 1910/1882/20.97 1990/1940.30/22.04 2000
90 2400/2400/0 2280/2243/22.63 2340/2297.30/21.16 2400
105 2800/2799.70/1.82 2660/2598.80/34.20 2730/2687.70/27.75 2800
120 3200/3200/0 2990/2924.8/37.90 3090/3049/21.22 3200
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4 Conclusions

In this paper we have presented a novel algorithm to solve optimization prob-
lems, inspired by the process of coral reefs formation, and guided by coral
reproduction, reef expansion and fight for the space in the reef. The algorithm,
named as the Coral Reef Optimization (CRO) algorithm, is a kind of cellular
evolutionary algorithm rendering very good properties of convergence to global
optima. In this paper we have studied the main characteristics of the proposed
CRO and analyzed its comparison to other existing meta-heuristic approaches
in different benchmark problems. The promising obtained results encourage
the application of the proposed CRO approach to other practical optimization
paradigms of high complexity.

Acknowledgements

This work has been partially supported by Spanish Ministry of Science and
Innovation, under project number ECO2010-22065-C03-02.

References

1.A. E. Eiben and J. E. Smith, “Introduction to evolutionary computing,” Springer-
Verlag, Natural Computing Series 1st edition, 2003.

2.H. G. Beyer and H. P. Schwefel, “Evolution strategies - A comprehensive introduc-
tion,” Natural Computing, vol. 1, no. 1, pp. 3-52, 2002.

3.X. Yao, Y. Liu and G. Lin, “Evolutionary Programming made faster,” IEEE Trans-
actions on Evolutionary Computation, vol. 3, no. 2, pp. 82-102, 1999.

4.R. Storn and K. Price, “Differential Evolution - A simple and efficient heuristic for
global optimization over continuous spaces,” Journal of Global Optimization, vol.
11, pp. 341-359, 1997.

5.M. Dorigo, V. Maziezzo and A. Colorni, “The ant system: optimization by a colony
of cooperating ants,” IEEE Transactions on Systems, Man and Cybernetics B,
vol. 26, no. 1, pp. 29-41, 1996.

6.J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of the 4th
IEEE International Conference on Neural Networks, pp. 1942-1948, 1995.

7.D. Karaboga and B. Basturk, “On the performance of the artificial bee colony
(ABC) algorithm,” Applied Soft Computing, vol. 8, pp. 687-697, 2008.

8.A. R. Mehrabian and C. Lucas, “A novel numerical optimization algorithm inspired
from weed colonization,” Ecological Informatics, vol. 1, pp. 355-366, 2006.

9.X. S. Yang and S. Deb, “Cuckoo search via Lévy flights,” in Proc. of the World
Conference on Nature & Biologically Inspired Computing, pp. 210-214, 2009.

10.Z. W. Geem, J. Hoon Kim and G. V. Loganathan, A New Heuristic Optimization
Algorithm: Harmony Search, Simulation, vol. 76, no. 2, 2001. 60-68.
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