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Abstract. In this paper we detail a new algorithm for multi-objective
optimization, the Multi-Objective Coral Reefs Optimization (MO-CRO)
algorithm. The algorithm is based on the simulation of the coral reefs pro-
cesses, including corals’ reproduction and fight for the space in the reef.
The adaptation to multi-objective problems is an easy process based on
domination or non-domination during the process of fight for the space
in the reef. The final MO-CRO is an easily implementing and fast algo-
rithm, quite simple, but able to keep diversity in the population of corals
(solutions) in a natural way. Experiments in different multi-objective
benchmark problems have shown the good performance of the proposed
approach in cases with limited computational resources, where we have
compared it with the well known NSGA-II algorithm as reference.

1 Introduction

The Coral Reefs Optimization Algorithm (CRO) is an evolutionary bio-inspired
approach based on the simulation of the processes in a coral reefs, recently pro-
posed in [1]. The CRO can be classified into the family of bio-inspired algorithms
which try to artificially simulate the behavior of a specific natural ecosystem to
tackle optimization problems, similarly to ant colony optimization [2], particle
swarm optimization algorithm [3], artificial bee colony approach (ABC) [4] or
the weed colonization algorithm [5]. The CRO has been proven to be effective in
several single-objective optimization problems, obtaining better solutions than
alternative optimization algorithms in the literature.

Basically, the CRO algorithm starts from a population of individuals encoding
different solutions to a given optimization problem. These solutions are located
in an square grid (reef), where there are also empty spaces at the beginning of the
algorithm. The algorithm is though to simulate the process of coral reproduction
(sexual and asexual reproduction operators are applied), and the process of coral
reef formation, where a fight for space occurs. Thus, in each step of the CRO
algorithm a coral larvae formation is carried out, and each larva tries to occupy
a place in the reef. It depends on how strong the larva is (how good the solution
to the optimization problem is), or if it is lucky enough to find an empty place
in the reef. Note that empty places in the reef are scarce after some generations
of larvae, though a process of corals depredation ensures the possibility of empty
places in the reef even at the final stages of the algorithm.
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In this paper we describe a multi-objective version of the CRO algorithm (MO-
CRO). The MO-CRO can be directly obtained from the basic CRO algorithm
with very few adaptations, resulting in an effective algorithm for multi-objective
optimization problems. The main characteristic of the MO-CRO is its simplicity
and the easy implementation of the algorithm, and its good performance in cases
where computational resources are limited. In the paper we describe in detail
the algorithm and its characteristics and provide some experimental proofs of its
performance in different benchmark optimization problems, where we compare
with the well-known NSGA-II algorithm.

The rest of the paper has been structured as follows: next section states the
main concepts and definitions of multi-objective optimization problems. Section
3 details the basic CRO algorithm, and the adaptations needed to make it ap-
propriate to solve multi-objective optimization problems. Section 4 describes the
experimental part of the paper, in which the MO-CRO has been applied to dif-
ferent benchmark problems and compared to the NSGA-II approach. Section 5
closes the paper by giving some final remarks and conclusions.

2 Multi-objective Problems: Basic Concepts and
Definitions

Following [6], we define next several important concepts in multi-objective
optimization such as domination, equivalency, non-domination with respect to
sets and pareto optimal vectors and fronts, that will be helpful later on, in the
definition of the MO-CRO.

Let us consider a multi-objective optimization algorithm, defined in a search
space S, formed by vectors with n-components x = x1, . . . , xn. Let us consider a
vector of m objective functions (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)), that maps
each vector x with a fitness space. The aim of a multi-objective optimization
problem is to find the set of optimal tradeoff solutions in S called Pareto optimal
set. Note that usually not all the pareto set is calculated, but a representative
subset is enough in the majority of cases. The following definitions are useful to
clearer define the problem:

Given two parameter vectors x and y, we say that x dominates y (y ≺ x) iff
x is at least as good as y in all objectives, and better in at least one. Similarly,
x is equivalent to y (x ≡ y) iff they are identical in all objectives considered.
Two parameter vectors are incomparable iff they are not equivalent, and neither
dominates the other. A parameter vector x is non-dominated with respect to a set
Ψ of vectors iff there is no vector in Ψ that dominates x. Ψ is called nondominated
set iff all vectors in Ψ are mutually nondominating. The set of corresponding
objective vectors for a nondominated set is a nondominated front. A parameter
vector is defined as Pareto optimal iff is nondominated with respect to the set of
all parameter vectors. Note that an improvement in any one objective of a pareto
optimal vector means worsening at least one other objective. The Pareto optimal
set is the set of all Pareto optimal parameter vectors, and the corresponding set
of objective vectors is the Pareto optimal front. Note that the Pareto optimal
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set is a subset of the search space, whereas the Pareto optimal front is a subset
of the fitness space.

3 The Multi-objective Coral Reefs Optimization
Algorithm

3.1 Basic CRO Algorithm

The CRO is a novel meta-heuristic approach based on corals’ reproduction and
coral reefs formation, proposed in [1]. Basically, the CRO is based on the artificial
modeling of a coral reef, Λ, consisting of a N ×M square grid. We assume that
each square (i, j) of Λ is able to allocate a coral (or colony of corals) Ξi,j ,
representing a solution to a given optimization problem, which is encoded as a
string of numbers in a given alphabet I. The CRO algorithm is first initialized
at random by assigning some squares in Λ to be occupied by corals (i.e. solutions
to the problem) and some other squares in the grid to be empty, i.e. holes in the
reef where new corals can freely settle and grow in the future. The rate between
free/occupied squares in Λ at the beginning of the algorithm is an important
parameter of the CRO algorithm, which is denoted as ρ, and note that 0 < ρ0 <
1. Each coral is labeled with an associated health function f(Ξij) : I → R, that
represents the problem’s objective function. The CRO is based on the fact that
reef will progress, as long as healthier (stronger) corals (which represent better
solutions to the problem at hand) survive, while less healthy corals perish.

After the reef initialization described above, a second phase of reef forma-
tion is artificially simulated in the CRO algorithm: a simulation of the corals’
reproduction in the reef is done by sequentially applying different operators.
This sequential set of operators is then applied until a given stop criteria is met.
Several operators to imitate corals’ reproduction are defined, among them: a
modeling of corals’ sexual reproduction (broadcast spawning and brooding), a
model of asexual reproduction (budding), and also some catastrophic events in
the reef, i.e. polyps depredation. After the sexual and asexual reproduction, the
set of larvae formed (new solutions to the problem), try to locate a place to grow
in the reef. It could be in a free space, or in an occupied once, by fighting against
the coral actually located in that place. If larvae are not successful in locate a
place to grow in a given number of attempts, they are depredated in this phase.

1. Broadcast Spawning (external sexual reproduction): the modeling of coral
reproduction by broadcast spawning consists of the following steps:

1.a. In a given step k of the reef formation phase, select uniformly at random
a fraction of the existing corals ρk in the reef to be broadcast spawners.
The fraction of broadcast spawners with respect to the overall amount
of existing corals in the reef will be denoted as Fb. Corals that are not
selected to be broadcast spawners (i.e. 1−Fb) will reproduce by brooding
later on, in the algorithm.
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1.b. Select couples out of the pool of broadcast spawner corals in step k. Each
of such couples will form a coral larva by sexual crossover, which is then
released out to the water. Note that, once two corals have been selected
to be the parents of a larva, they are not chosen anymore in step k (i.e.
two corals are parents only once in a given step).

2. Brooding (internal sexual reproduction): as previously mentioned, at each
step k of the reef formation phase in the CRO algorithm, the fraction of
corals that will reproduce by brooding is 1 − Fb. The brooding modeling
consists of the formation of a coral larva by means of a random mutation of
the brooding-reproductive coral (self-fertilization considering hermaphrodite
corals). The produced larva is then released out to the water in a similar
fashion than that of the larvae generated in step 1.b.

3. Larvae setting: once all the larvae are formed at step k either through broad-
cast spawning (1.) or by brooding (2.), they will try to set and grow in the
reef. First, the health function of each coral larva is computed. Second, each
larva will randomly try to set in a square (i, j) of the reef. If the square is
empty (free space in the reef), the coral grows therein no matter the value
of its health function. By contrast, if a coral is already occupying the square
at hand, the new larva will set only if its health function is better than that
of the existing coral. We define a number κ of attempts for a larva to set in
the reef: after κ unsuccessful tries, it will be depredated by animals in the
reef.

4. Asexual reproduction: in the modeling of asexual reproduction (budding or
fragmentation), the overall set of existing corals in the reef are sorted as a
function of their level of healthiness (given by f(Ξij)), from which a fraction
Fa duplicates itself and tries to settle in a different part of the reef by follow-
ing the setting process described in Step 3. Note that a maximum number
of identical corals (μ) will be allowed in the reef.

5. Depredation in polyp phase: corals may die during the reef formation phase of
the CRO algorithm. At the end of each reproduction step k, a small number
of corals in the reef can be depredated, thus liberating space in the reef for
next coral generation. The depredation operator is applied with a very small
probability Pd at each step k, and exclusively to a fraction Fd of the worse
health corals in Λ.

3.2 Multi-objective CRO

The adaptation of the CRO to multi-objective problems is an easy task by start-
ing from the basic CRO approach. It is established in the Larvae Setting process
of the algorithm and in a generalization of the depredation operator: once all the
larvae from broadcast spawning and brooding have been produced, they start
the setting process one by one, trying to established themselves into the reef.
When an existing coral occupies a given position in the reef that is tried by a



330 S. Salcedo-Sanz et al.

larva, a fight for the space occurs. In the MO-CRO, this fight for the space is
based on domination of solutions. Let us call ΞA to the coral currently occupying
a given location on the reef, and ΞB the larva challenging for the space. In the
MO-CRO, ΞB wins the fight (and occupies the place of ΞA) iff ΞA ≺ ΞB. In any
other case, ΞA wins, and the challenging larva either tries another place in the
reef, or die, depending on its current κ value. Note that in case of equivalency
between solutions (ΞA ≡ ΞB), the current solution in the reef is maintained.
A second adaptation is needed in order to provide diversity to the reef: In the
MO-CRO, a fix number μ of corals with the same value in all objective func-
tions is allowed in the population. After the larvae setting process, we obtain
the number of corals in the reef with the same value in all objectives, let us call
it β, and if μ < β, (β − μ) randomly chosen corals are depredated. We call this
adaptation as Extreme Depredation Operator (EDO).
Several points must be notated:

1. The algorithm will never destroy vectors belonging to the pareto optimal
front, since they will dominate or will be incomparable to any other possible
vector in the search space.

2. Dominated solutions may coexist with better individuals if empty places
exist in the coral reef.

3. The generation of diversity in the first stages of the algorithm is comparable
to that of evolutionary approaches.

4. Due to 1., the genetic drift causing the loss of diversity in the population of
evolutionary algorithms does not occur within the CRO algorithm.

5. Thanks to the EDO, the The CRO does not, therefore, need to establish a
ranking on the individuals, nor needs for modification in fitness values in
order to preserve diversity in the population.

6. The MO-CRO is nearly as fast as the basic CRO, and it is straightforward
to implement from the basic CRO version.

4 Experimental Part

In order to test the performance of the proposed MO-CRO, we have tackled a
number of benchmark functions, usually employed in the literature for the eval-
uation of multi-objective approaches [7], that are defined in Table 1. In order to
contrast the results obtained with the MO-CRO, we will carry out a comparison
with a successful algorithm in the literature, the NSGA-II algorithm [7]. The
methodology of the comparison will be the following: a fix (limited) number of
function evaluations is set for both the NSGA-II and MO-CRO. The idea is to
analyze the performance of the algorithms in cases of reduced computational
resources available. Specifically, the NSGA-II has been run with 100 individuals,
during 200 generations, and the MO-CRO has been adjusted to approximately
evaluate the same number of functions. A matlab implementation of the NSGA-
II algorithm has been used [8]. In this version of the algorithm, a Simulated
Binary Crossover [9] and a polynomial mutation [10] are implemented. We have
also used this operators in the MO-CRO algorithm.
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Table 1. Benchmark function to test the MO-CRO proposed in this paper

Function n variable bounds Expression

FON 3 [−4, 4] f1(x) = 1− exp

(
−∑3

1

(
xi − 1√

3

)2
)

f2(x) = 1− exp

(
−∑3

1

(
xi +

1√
3

)2
)

SCH 1 [−1000, 1000] f1(x) = x2

f2(x) = (x− 2)2

ZDT1 30 [0, 1] f1(x) = x1

f2(x) = g(x)
[
1−

√
x1
g(x)

]
g(x) = 1 + 9

(∑n
i=2 xi

)
/(n− 1)

ZDT2 30 [0, 1] f1(x) = x1

f2(x) = g(x)
[
1− ( x1

g(x)
)2
]

g(x) = 1 + 9
(∑n

i=2 xi

)
/(n− 1)

ZDT3 30 [0, 1] f1(x) = x1

f2(x) = g(x)
[
1−

√
x1

g(x)
− x1

g(x)
sin(10πx1)

]
g(x) = 1 + 9

(∑n
i=2 xi

)
/(n− 1)

ZDT6 10 [0, 1] f1(x) = 1− exp (−4x1) sin
6(6πx1)

f2(x) = g(x)
[
1− ( f1(x)

g(x)
)2
]

g(x) = 1 + 9
[(∑n

i=2 xi

)
/(n− 1)

]0.25

The comparative results obtained with the MO-CRO and NSGA-II algorithms
are shown in Figure 1. As can be seen, in the FON function, the MO-CRO is
able to get the optimal pareto front, though in this case the NSGA-II algorithm
covers better the extremes of the front. In SCH benchmark the MO-CRO covers
the optimal front in a similar way that the NSGA-II. In the most difficult func-
tions (ZDT), the performance of the MO-CRO with the resources considered
(number of function evaluation) is better than the NSGA-II. In ZDT1 function,
the NSGA-II does not obtain the optimal pareto front with the number of func-
tion evaluations fixed. The MO-CRO is able to get this optimal front, covering
it in a reasonable way. The behavior of the algorithms is quite similar in func-
tion ZDT2, the NSGA-II is not able to obtain the optimal pareto front with
the limited number of objective function evaluation, and the MO-CRO obtains
it, reasonably covering the complete front. Function ZDT3 considers a discon-
tinuous optimal front. The MO-CRO is able to obtain it, but it does not cover
completely part of the front. The NSGA-II obtains a suboptimal front, but it
covers it almost completely. Finally, in Function ZDT6, both algorithms as able
to obtain the optimal pareto front. The NSGA-II covers it better than the MO-
CRO, but it also shows suboptimal solutions at the left-most part of the front.



332 S. Salcedo-Sanz et al.

Summarizing, the proposed MO-CRO obtains good results in terms of optimal
front location even with limited computational resources (limited number of pos-
sible function evaluation), improving the behaviour of the NSGA-II algorithm.
It seems that the NSGA-II outperforms the MO-CRO in terms of diversity of
solutions in the optimal front. Due to its simplicity, the proposed MO-CRO
algorithm could be a good option in real-world multi-objective problems and
applications.
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Fig. 1. Comparison MO-CRO vs. NSGA-II in the different benchmark functions con-
sidered; (a) FON; (b) SCH; (c) ZDT1; (d) ZDT2; (e) ZDT3 and (f) ZDT6.
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5 Conclusions

In this paper we have presented a novel algorithm for multi-objective optimiza-
tion problems: the Multi-Objective Coral Reefs Optimization algorithm (MO-
CRO). We have detailed the algorithm’s structure and the adaptations neces-
sary in the CRO to convert it into a multi-objective algorithm. We have verified
the goodness of the proposed approach in several multi-objective optimization
benchmark problems with limited computational resources available, where we
have compared its performance with that of a popular evolutionary algorithm
for multi-objective optimization (the NSGA-II algorithm). The proposed MO-
CRO main characteristics are its simplicity and easy implementation, its low-
computational cost and the good results obtained in several test functions.
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