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2Department of Cost Modeling and Internet Economics, WIK Consult GmbH, 53604 Bad Honnef, Germany.

ABSTRACT

Mobile technology is currently one of the main pillars of worldwide economy. The constant evolution that mobile
communications have undergone in the last decades, due to the appearance of new services and new technologies such as
UMTS/HSPA and LTE, has contributed to achieve this position in global economy. However, due to the crisis of the sector
in the last five years, mobile operator’s revenues and investments have been reduced. Thus, mobile network operators tend
to exploit the existing infrastructure at maximum possible, trying to use the existing network in the most efficient way. In
this paper, a novel bio-inspired algorithm, the coral reef optimization algorithm (CRO) is introduced to minimize a network
deployment investment cost problem. This is carried out by means of optimizing the user demand of different services
offered by mobile operators over the available technologies in the market, namely the Optimal Service Distribution Problem
(OSDP). The CRO is a recently proposed meta-heuristic based on the computer simulation of corals reproduction and
reefs’ formation. In this paper, this algorithm has been tested on several OSDP scenarios in Spain, observing a significant
reduction (up to 400 Me) on the total investment costs associated to the Radio Access Network deployment. We compare
the performance of the CRO approach with that of a classical (experience-based) services distribution, and with alternative
meta-heuristics techniques, obtaining good results in all cases. Copyright c⃝ 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mobile telecommunication market is currently one of
the most relevant players in global economy. Penetration
of the different mobile technologies and services has
continuously grown since they were massively introduced
at the beginning of the 1990’s, producing a corresponding
important growth of Mobile Network Operators’ (MNO)
revenues. Figure 1 shows the evolution of the MNO
revenue’s absolute values, together with the year-to-year
revenues growth percentage.

One of the key points that explains the current
importance of mobile telecommunications in economy is
the fast development and introduction of new technologies
in the market. Namely, in Europe: 1) 2nd Generation,
Global System for Mobile Telecommunications (GSM),
2) 3rd Generation, Universal Mobile Telecommunication
Systems (UMTS), and 3) 4th Generation, Long Term
Evolution (LTE). Furthermore, some of them have
enhancements within its own generation, i.e., High Speed
Data Access (HSPA) which is an evolution of 3G-UMTS

also know as 3.5G. Note that the higher the technology
generation, the higher the binary data rate offered to the
customer, and the more efficient, in terms of spectrum
use and system performance, it is. 2G-GSM was the
first digital technology and it is mainly oriented to the
provision of voice service. 3G-UMTS has better voice
performance than 2G and, in addition, it provides data
services that achieve up to 384 Kbps with global mobility
cases. Moreover, HSPA provides up to 14.4 Mbps to the
user with local mobility. On the other hand, 4G-LTE is
designed to be the competitor to the broadband fixed access
with data rates that can reach up to 100 Mbps.

At the end of the last century, MNOs deployed their
2G-GSM networks, and currently they have countrywide
coverage. The deployment of 3G-UMTS started on the first
years of last decade, and, in most countries, it currently
reaches more than 90% of the population. The coverage
status of HSPA depends on the country, but it is already
deployed in most metropolitan areas and large cities.
Finally, LTE is currently being deployed, and its final
implementation will depend on the strategic technological
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view of each MNO. Therefore, a large MNO may have
up to three overlaying networks, GSM, UMTS/HSPA
and an incipient LTE network. Moreover, the MNO may
implement a large set of services such as voice, best effort
data, streaming, and even the use of advanced multicast
techniques recently developed [1, 2] on their networks.
With the current global crisis, the investment on new
network infrastructures has been dramatically reduced [3].
In Spain (where we focus the experimental part of this
work) investment has dropped from 2,439Me in 2007 to
1,575Me in 2011 (35% reduction) [4]. Therefore, any
MNO must exploit the existing infrastructure at maximum
possible, trying to use the existing network in the most
efficient way. This implies to optimize the use of the radio
access network resources by the set of services considered.
Optimal distribution of services over the radio access
network in current mobile broadband networks has been
extensively studied in the literature. However previous
works refer to different scheduling methods which are
mainly applied in the operation of the network [5, 6] or
consider a single technology [7].

In this paper, we consider a previous stage of the
problem, the dimensioning of the network, and we focus
on the distribution of the services over all existing
technologies, from 2G up to 4G, instead of optimizing
the scheduling for a single technology. Note that given
a specific service that can be carried by two (maybe
three) technologies, an efficient distribution of this service
among the deployed technologies is critical to provide a
high quality of service with an optimized cost network
infrastructure. Note also that the optimal distribution of the
services, which minimizes the investment costs, depends
on a large set of parameters such as frequency bands,
base stations’ transmission power, individual traffic per
service, market share, market penetration, etc. Therefore,
in this paper we state and solve the Optimal Service
Distribution Problem (OSDP), that is a complex problem
that cannot be tackled with traditional approaches. In this
case we study the possibility of using modern optimization
techniques such as bio-inspired meta-heuristics. These
approaches have been previously applied to solve different
complex optimization problems in the area of mobile
communications, such as optimal location of network
facilities or base stations (BS) [8, 9, 10, 11], different
versions of channel allocation problems [12, 13, 14, 15, 16,
17], load balancing problems [18, 19], etc. The majority of
bio-inspired algorithms used in these works are genetic and
evolutionary algorithms, particle swarm approaches or ant
colony optimization algorithms.

The aim of this paper is two-fold. First, tackle the
problem of optimal distribution of different services over
available technologies in a mobile communications system
(the OSDP), which leads to an optimized-cost network
deployment. Second, we introduce a new bio-inspired
algorithm to do this task, the Coral Reef Optimization
(CRO) algorithm. The CRO is a bio-inspired meta-
heuristic recently introduced in [20], and based on the

simulation of coral reproduction and reef formation.
We will show that the proposed CRO approach obtains
excellent results in the OSDP, better than traditional
solutions to the problem (based on the use of specific
distribution of services provided by experienced users),
and also better that alternative meta-heuristics such as
an evolutionary algorithm and a Teaching-Based-Learning
approach.

The rest of the paper is structured as follows: Section
2 provides the mathematical definition of the OSDP. Next,
the proposed solution using the CRO algorithm, together
with the definition of the objective function used, is
described in detail in Section 3. A general description of
the Strategic Mobile Network Planning Tool (SMNPT)
employed to obtain the objective function in the CRO, is
also introduced in this section. The experimental section
(Section 4) shows the performance of the algorithm in a
real scenario composed by the 5354 largest Spanish cities.
Finally, conclusions and future work lines are described in
Section 5.

2. PROBLEM DEFINITION

Let us consider a scenario E that is composed by a
large set of parameters, e.g. the set of cities and villages
where the network deployment has to be calculated, the
frequency constraints in terms of available frequency
bands (800 MHz, 900 MHz, 1800 MHz, 2100 MHz and
2600 MHz) and the total bandwidth available in each
frequency band, the market situation of the operator
under study, the specific hardware that the operator can
deploy, and the set of individual costs related to each
network element. In addition to these parameters, a set
of services S = {1 ≤ i ≤ |S|}, such as voice, best effort
data, guaranteed data, etc., each one characterized by a set
of parameters PS

i , PS
i = {1 ≤ p ≤ |P|}, is also defined.

In this work, parameters defining the services, among
others, are the binary rate RbSi , the individual traffic per
user, as

i and the required quality of service qsi .

Let us define also the set of available technologies T =
{1 ≤ j ≤ |T |}, that in this work we consider to be: 2G-
GSM, 3G-UMTS, 3G-HSPA and 4G-LTE. A deployment
function, ϕ, which depends on the general features of
the scenario E, the set of services defined by their
characteristics parameters S, together with the distribution
of these services, D, over the considered technologies.
D stands for the specific service’s traffic percentage, i,
allocated to the specific technology, j, (Di,j).

The deployment function ϕ provides the number,
location and type of the network resources, which are the
base stations (BS) of the different technologies, required
by a specific scenario E.

Thus, the problem’s objective is to minimize the
cost of the network deployment, C(ϕ), fulfilling the
quality constraints of the set of services S. The result
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of the deployment depends on the set of services S, the
distribution of these services over the technologies D and
the corresponding scenario E, ϕ(E,S,D). Given E and
S, the cost of the deployment exclusively depends on an
optimal services’ distribution over the technologies, D.

Thus, the optimal network deployment, in terms of
investment costs, is based on the estimation of the optimal
services’ distribution over the technologies.

Find D / min(C(ϕ(E,S,D)))

3. ALGORITHM FOR SOLVING THE
OSDP

Optimization problems arise in many fields of Science
and Engineering. One possible approach to solve these
problems is to apply classical optimization algorithms,
however due to multiple factors such as high dimension
search spaces, non-linear objective functions and con-
straints, these approaches do not offer a good solution.
Efforts on solving non-linear optimization problems, in a
more efficient way, have been made with the use of mod-
ern optimization heuristics and meta-heuristics algorithms,
such as bio-inspired algorithms. In this section a novel
bio-inspired meta-heuristic algorithm, based on the coral
behavior [20, 21], to solve the OSDP is introduced.

3.1. The Coral Reef Optimization Algorithm

The CRO is a novel meta-heuristic search approach
based on corals’ reproduction and coral reefs’ formation,
proposed in [20] and [21]. The CRO borrows concepts
from Evolutionary Computation and Simulated Annealing
algorithms, but introducing new variants and concepts.
The exploration phase of the algorithm is carried out by
operators that simulate the sexual and asexual reproductive
processes of corals, and there is a process of fight for the
space in the reef, that allows the best corals (best solutions
to a given optimization problem) to survive.

Basically, the CRO is based on the artificial modeling
of a coral reef, Λ, consisting of a N ×M square grid. We
assume that each square (i, j) of Λ is able to allocate a
coral (or colony of corals) Ξi,j , representing a solution to
a given optimization problem, which is encoded as a string
of numbers in a given alphabet I. The CRO algorithm is
first initialized at random by assigning some squares in Λ
to be occupied by corals (i.e. solutions to the problem) and
some other squares in the grid to be empty, i.e. holes in
the reef where new corals can freely settle and grow in the
future. The rate between free/occupied squares in Λ at the
beginning of the algorithm is an important parameter of the
CRO algorithm, which is denoted as ρ, and note that 0 <
ρ0 < 1. Each coral is labeled with an associated health
function f(Ξij) : I → R, that represents the problem’s
objective function. The CRO is based on the fact that the

reef will progress, as long as healthier (stronger) corals
(which represent better solutions to the problem at hand)
survive, while less healthy corals perish.

After the reef initialization process described above, a
second phase of reef formation is artificially simulated
in the CRO algorithm: a simulation of the corals’
reproduction in the reef is done by sequentially applying
different operators. This sequential set of operators is then
applied until a given stop criteria is met. Several operators
to imitate corals’ reproduction are defined, among them:
a modeling of corals’ sexual reproduction (broadcast
spawning and brooding), a model of asexual reproduction
(budding), and also some catastrophic events in the reef,
i.e. polyps depredation. After the sexual and asexual
reproduction, the set of larvae formed (new solutions to
the problem), try to locate a place to grow in the reef. It
could be in a free space, or in an occupied one, where
they have to fight against the existing coral and the best
survives. If larvae are not successful to locate a place to
grow in a given number of attempts, they are depredated
(depredation phase). Figure 2 illustrates the flow diagram
of the CRO algorithm referencing the two CRO phases
(reef initialization and reef formation), along with all the
operators described above.

The objective of the OSDP tackled in this paper is to
estimate an optimal distribution of the users’ demand for
every service defined in the services’ profile, S. Therefore,
the first step is to determine how to encode the distribution
of the user’s demanded traffic in the CRO algorithm.
This distribution indicates the percentage of the user’s
demand of every service i that is carried by one specific
technology j. Thus a real encoding for this distribution
is used: Di,j ∈ [0, 1]. Figure 3 shows the definition of a
generic coral encoded in the CRO. Using this encoding,
the CRO algorithm is based on four different processes:
an initialization phase, a reproduction phase, a coral larvae
allocation phase and a depredation phase.

First, in the initialization phase, a fraction of the coral
reef is initialized from randomly generated corals or
polyps. The creation of the initial coral larvae is made
by means of a pseudo-random process (note that several
technology constraints related to the capabilities of each
technology will be defined later – Section 4– which might
affect the feasibility of individuals). Later on, these larvae
are settled into the reef at randomly chosen positions. Note
that after the initialization process not all the positions
are occupied, this is necessary to guarantee the correct
simulation of a coral reef formation in real world.

Second, the reproduction phase consists of three dif-
ferent types of reproduction: external sexual reproduction,
implemented by means of crossover operators, internal
sexual reproduction, that uses a random mutation, and
asexual reproduction carried out by randomly choosing
one among the best existing corals and making a copy of
it.

• The external sexual reproduction or broadcast
spawning, is simulated using a crossover operator
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applied to a fraction of the existing corals, Fb.
Our model implements the following crossover
operators: one point crossover, two points crossover
and N -swap crossover. The type of crossover
operator used in the algorithm is set at the beginning
of the process, and maintained during all the
generations of it.
The one point crossover operator randomly selects
two parents among the existing corals in the
reef, and a random point where the crossover is
performed to generate a new coral larva (Figure
4(a)). Once the parents are chosen they are no
longer used for reproduction purposes at that given
iteration. This new coral larva will become a coral
at the beginning of the next iteration, after the
larvae setting process that will be explained later.

The two points crossover operator is based on the
same process as one point crossover. In this case, a
random selection of two different points, where the
crossover is performed, is done (Figure 4(b)).

Finally, the N -swap crossover operator follows the
same parents selection procedure, and randomly
chooses N blocks of services, in the encoded
inhabitant, to be swapped (Figure 4(c)).

As has been previously mentioned, the distribution
of the traffic demand over the different technologies
has to meet specific constraints, which depends on
each specific scenario, see Section 4. Thus, after
the crossover takes place, a reparation phase starts.
During this reparation phase, the algorithm checks
whether all the constraints are fulfilled, and if not,
the larva is repaired. This operation may affect
one or several services within the larvae’s encoding.

• Internal sexual reproduction or brooding, as it is
less likely to occur, has been implemented by using
the mutation operator over the complementary
fraction, 1− Fb, of existing corals at iteration k.
The mutation is done over a randomly selected
characteristic of the coral, that is a specific
percentage of a service over one technology, and
it is performed by the aggregation or subtraction
of a extremely low randomly generated number to
the value of a specific characteristic. As it occurred
in broadcast spawning reproduction, a reparation
phase follows the brooding method to ensure viable
corals.

• The asexual reproduction or budding, occurs with
a very low probability, Pa, at each iteration k.
To be performed, the existing corals are sorted by
their health function in ascending order, choosing
a fraction, Fa, of the corals and making a copy of
one, randomly chosen, among the selection.

Using the operators above, the new coral larvae are
generated and the setting phase starts. First, the CRO
algorithm calculates the health function of every larva.
Second, a random position, (i, j), of the reef is chosen
to host the larva. On the one hand, if the chosen position
is empty, the new larva settles in the reef. On the other
hand, if the position is occupied by a previous larva, a
comparison of the health function’s value is carried out.
If the health function value of the new larva is better than
the existing coral, then the new larva replaces the former
coral and is settled in the reef, otherwise, a new position
in the reef, (i, j)′ is randomly chosen and the allocation
phase for this larva starts from the beginning. The CRO
algorithm defines a maximum number of attempts, κ, to
settle each larva.

Finally, at the end of each iteration k, the CRO
algorithm checks the status of the reef. Should the reef
be full, a depredation phase is performed. A fraction of
corals, Fd, having the worst health function is selected
as candidates to be discarded. The depredation of the
candidates occurs with a very low probability, Pd.

The process explained above is performed iteratively
until a specific stopping condition is met. In our problem,
the stop condition is defined by the number of total
evaluations of the health function. Once the number of
evaluations reaches the defined threshold, the algorithm
stops and selects the best coral, in terms of investment cost,
as the final solution of the optimization phase.

3.2. CRO health function definition

Each coral (problem solution) in the reef has its own
associated health function. In our problem the health
function is C(ϕ), as was stated in Section 2. Due
to the many input parameters involved in the analytic
expression of C(ϕ) and for the sake of simplicity, it can
be summarized by dividing it up in three different parts:

C(ϕ) = Cs + CBS + Cf (1)

where:

• Cs: Defined as the investment cost of the site,
including terrain and civil working investment.
This factor depends on the type of technology or
technologies’ combination installed in each site.

• CBS : Cost of the base station. It depends on
the type of technology, the type of base station
considered, macro-cell, micro-cell or pico-cell, and
number of sectors in each base station.

• Cf : Investment cost of the required frequency-
related hardware resources. In case of 2G-GSM
technology the total number of TRX installed in
each BS is considered. In 3G-UMTS and 3G-
HSPA, the cost is defined by the total number of
carriers, radio-frequency (RF) modules, required in
the dimensioning process, here it is supposed each
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RF module is capable of managing only one 5
MHz frequency block. Finally, in LTE the eNodeBs
considered are able to manage the whole set of
LTE bandwidth possibilities, from 1.4 MHz to 20
MHz. This makes the price of this equipment to
be larger than classic 3G system’s NodeBs. This
feature makes unnecessary the definition of a new
hardware frequency-related cost parameter for LTE.

Note that although the three parameters (Cs, CBS

and Cf ) are relevant from the point of view of network
dimensioning and investment, the parameter CBS has the
largest influence in the health function of the CRO, since
it is the cost driver for traffic-limited Node B’s. These
are usually located in urban areas with high traffic load.
However, note also that it cannot be dissociated from the
other two, Cs and Cf , because the higher the traffic the
more frequency resources are required (measured by Cf )
and, on the other hand, if the capacity of the NodeB is
overpassed, a new site has to be deployed, and therefore the
cost term Cs increases. Moreover, since terms (Cs, CBS

and Cf ) cannot be expressed analytically, a simulation tool
must be used in order to obtain each one of them, and thus
calculate C(ϕ).

3.3. Health function evaluation

As stated before, the coral encoding determines the ser-
vices’ distribution over the different mobile technologies
available. To obtain the health function associated to each
coral, the software tool Strategic Mobile Network Planning
Tool (SMNPT) [22]-[23] has been used in this work.
The SMNPT, developed by the University of Alcalá, the
University of Cantabria and the German company WIK-
Consult GmbH, has been successfully applied before to
several regulatory projects [24]-[25]. Figure 5 shows how
a given coral in the CRO is passed to the SMNPT to obtain
the coral’s health function.

The SMNPT obtains the resources needed in a network
deployment to fulfill certain services’ load over certain
technologies. Network infrastructure depends on the
number and type of the required network elements. To
minimize the investment, each base stations cell range
has to be maximized; hence the number of required BS
is minimized. The cell range is defined as the maximum
range of a single cell able to fulfill the user demand
and propagation restrictions. Thus, for each technology
considered, a capacity analysis and a propagation analysis
(subsections 3.3.1 to 3.3.3) have to be performed, and
the most restrictive is the one that determines the cell
range. Finally, the number of sites required is calculated
as explained in the following subsections.

3.3.1. 2G network deployment model
2G-GSM technology is a time division multiple access

(TDMA) and a hard blocking system, which means the
capacity is directly related to the amount of hardware
(sectors, transceivers per sector (TRX) and traffic channels
per TRX) installed at the base stations. The implemented

model estimates the minimum cell range, and therefore
the number of second generation base stations, BTS, to
be deployed in each area of a specific city. The capacity
analysis applied is based on the Erlang-B formulation,
the grade of service (GoS) and the user demand. The
propagation model applied to perform the coverage study
is based on a one-slope empirical model, the Cost231-
Hata model which is commonly used in mobile network
applications [26].

3.3.2. 3G network deployment model
3G-UMTS Technology 3G-UMTS technology is based
on wide-band code division multiple access (W-CDMA)
and therefore it is a soft blocking system, which means
the capacity of the network does not depend on the
hardware installed in the base station but on the amount
of interference present in the system. This interference
is caused by the active users both in one’s cell and
in neighboring cells. The maximum interference level
allowed is defined by the Interference Margin, IM ,
and is applied to the capacity and propagation analysis.
Therefore, in 3G-UMTS there is a relation between the
capacity and the propagation dimensioning processes.

The model implements a multi service optimization
algorithm which estimates the number of base stations
(Nodes B) needed, and maximizes the Node B range
according to a set of propagation and capacity constraints
[27]. The propagation model applied to 3G-UMTS
dimensioning process is, as in 2G, based on the Cost231-
Hata model.

3G-HSPA Technology 3G-HSPA technology uses W-
CDMA, and therefore there is a close relation between
propagation and capacity too. The dimensioning method
followed by the HSPA algorithm is based on: 1) The
guaranteed user throughput, defined as the guaranteed data
transfer rate offered to a subscriber at the cell edge, and 2)
the terminal category. Each terminal category presents its
own features in terms of modulation and coding schemes
(MCS), signal to interference noise ratio, SINR, used
in the Cost231-Hata model propagation analysis, and
maximum offered throughput applied to the capacity study.
The model estimates the cell range and the number of
HSPA base stations to be deployed based on [22], [28].

3.3.3. 4G network deployment model
To determine the number of 4G-LTE evolved Nodes

B, a propagation and capacity analysis is performed.
In this technology, data from an external link level
simulator, providing necessary input parameters such as
the SINR and the resources required per user, is needed.
Capacity study is based on the same concept as in HSPA,
that is, the subscriber demanded throughput. Applying
an external link level simulator based on the value of
the subscriber throughput the SMNPT fixes a starting
modulation and coding scheme, which in turn, sets a
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value for SINR and number of frequency resources
required per subscriber to fulfill the demanded throughput.
Propagation analysis is based on Cost231-Hata model,
as in previous technologies. The model carries out both
analysis, propagation and capacity, for all possible MCS
according to the demanded throughput, selecting the one
that minimizes the investment costs as final solution (we
consider that all mobile terminals implement all possible
MCS schemes).

3.3.4. Sites estimation process
The SMNPT carries out a propagation and a capacity

analysis for all considered technologies in every area
type (urban, suburban and rural) within every city, also
considering all possible types of BS. Note that for each
BS’s technology there are several makes and models
available in the market. For each type of BS considered,
the SMNPT obtains a set of different cell ranges, and
therefore a total number of network elements to install. The
total number of BS required in order to meet the users’
demand and propagation restrictions depends on At, the
total area of each type of terrain, urban, suburban or rural,
of a specific city, and ABS , that is the area covered by the
BS. Therefore the total number of sites required, NSt , is
obtained as follows:

NSt = ⌈At/ABS⌉ (2)

where t is the type of area within a city, urban, suburban
and rural.

4. EXPERIMENTS

This section is focused on the definition of the
experiments performed and the results obtained to show
the performance of the proposed CRO. To define the
experiment, input parameters determining the scenario
(parameters used to determine the deployment study), and
parameters characterizing the optimization process have to
be chosen.

4.1. Coral-Reef optimization parameters
definition

In this subsection, values considered for the CRO
algorithm are provided in Table I. The population size used
for each different crossover operator (1 point, 2 points, 2-
Swap and 3-Swap) in the experiments carried out in this
work is set to 75 corals. A total of 100 executions were
performed, each one involving 7500 evaluations (calls to
the SMNPT tool).

4.2. Experimental scenarios description

The scenarios defined in this work describe the dimension-
ing of a Spanish nationwide network deployment as stated
in the Spanish Telecommunication Market Commission
2011 annual report [29]. In this report, considered services’

figures are shown in Table II. User’s demand of every
service, except for the Mobile Broadband Access Service
(MBAS), are referred to the voice service, and thus data
services demand values are expressed in voice-equivalent
mE (miliErlangs). MBAS value is referred to the minimum
guaranteed transfer data rate, in Kbps, at the cell edge,
offered to any user in a specific cell. Note that multicast
services are considered in MBAS service, that covers these
and other similar services with high binary rate demand.

Several considerations have been made to deal with
some computation time problems and site’s mobile
technology combinations. In this work, Spain was chosen
as test bed, a country made up of 5354 different districts
(cities and villages). Due to the high number of districts
involved, the computation time of one health function
evaluation (one call to the SMNPT software) for the set
of services shown in Table II takes up to forty minutes.
For the values considered in Section 4.1, each execution
(iteration) of the coral based optimization process needs
to compute 7500 evaluations, and a total of 100 iterations
are considered, which is not a feasible working scenario.
For this reason, instead of carrying out the optimization
process for the whole country, the CRO algorithm was
applied to a subset of districts. A fraction, Fc = 10, of
those 5354 districts was chosen, which implies an average
total computational time of seven hours.

The districts to be part of the coral-based optimization
process are selected according to a population density
criterion. First, maximum and minimum population
density of the districts are calculated, ΓM and Γm

respectively. Second, the population density step is
obtained ((ΓM − Γm)/Fc), and different groups are
formed. The process seeks one representative city that has
every type of area (urban, suburban and rural), and meets
the population density constraints of each of the defined
groups. However, if no district fulfills the first condition,
the selection process chooses the district only based on
population density criterion. Following this criterion, most
Spanish main cities such as Madrid, Barcelona, Vitoria, A
Coruña, etc., are selected.

Once the most representative districts have been
chosen, the CRO is applied to obtain the best service
distribution for this set-up. Next, the cost associated
to the nationwide deployment is estimated using this
same service distribution. Note that in this nationwide
deployment only one evaluation is needed as the service
distribution is fixed. For a given site, several technology
combinations are possible (varying from pure sites (only
2G or only 3G technology on the site) to hybrid sites
(that can combine 2G+3G, 2G+4G, 3G+4G or even
2G+3G+4G).

In this work three different scenarios, A, B and C, are
defined to test the performance of the designed algorithm.
These scenarios range from an ideal setup (Scenario A), to
a real setup based on the frequency constraints that apply
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in Spain and for a 25% operator market share (Scenario
C). In all of them, the hybrid option where all available
technologies can be combined on the same site is chosen,
due to the fact that it leads to cost reduction.

• Scenario A estimates the optimal service distribu-
tion of the user demand considering no restrictions,
such as user’s demand allocation over a specific
technology or real spectrum allocation.

• Scenario B estimates the optimal service
distribution of the user demand considering
that a minimum percentage of the user demand has
to be allocated to a specific technology. Note that
this scenario reduces the degree of freedom, and
therefore the search space, as well as it reflects a
real case scenario where a MNO needs to allocate
traffic over the different technologies owned. Also,
in regulatory projects, restrictions are assigned to
each operator based on previous investment and
depreciation. Data considered in this scenario are
shown in Table III. Traditional second generation
services such as voice, SMS and MMS, keep a 25%
of the user demand over the GSM network, higher
data rate services such as streaming, guaranteed-
data and best-effort are forced to be carried by
UMTS at least a 40% of the user demand, and
mobile internet is carried only by HSPA and LTE
technology, due to the low number of commercial
LTE networks, a 75% of the user demand of MBAS
is routed over HSPA technology.

• Scenario C estimates the optimal service distribu-
tion based on the restrictions considered in scenario
B, together with additional frequency constraints
fixed by the current spectrum allocation in Spain
[30].

The frequency resources available at each scenario are
shown in Table IV.

4.3. Scenarios A and B results

In this subsection, the results obtained for scenarios A
and B are shown. The cost estimation for every crossover
operator defined in the CRO algorithm is obtained, and
finally a comparison between this cost and the cost due to a
classical, non-optimized, service distribution is carried out.

Table V shows the results after the CRO execution
when different crossover operators are applied. The result
gives information about, on the one hand, the optimized
investment costs for the subset of districts selected for
the optimization process, and on the other hand, the total
investment cost of a nationwide deployment on which an
hypothetical new entrant will incur. Figure 6 shows the
graphical representation of the total investment costs.

The total investment cost, for both the subset of districts
and the nationwide deployment, depends directly on an
optimal distribution of the user demand. An optimal

distribution of the user demand is understood as the
distribution that makes the most of the base stations
installed for every technology, and it drives the demand
of each service through the most efficient technology able
to carry it. The obtained results show that the performance
of the CRO, in terms of investment costs, is better when
any of the N-Swap crossover operator is applied than
when a single or double point crossover is applied. Table
VI compares the distribution of the user demand when
2-points crossover and 2-Swap crossover operators are
applied. It can be seen how the 2-Swap crossover operator
minimizes the percentage of the data traffic load allocated
to the least efficient technologies carrying data among the
ones considered.

The application of the CRO algorithm explained in
this paper leads to a reduction of the total investment in
comparison to a classical distribution of the user demand,
and therefore of the interconnection charges. Table VII
shows the economic impact of the CRO algorithm in
comparison toa classical, experience-based user demand
distribution, see Table VI.

4.4. Scenario C results

As the performance of the N-Swap crossover operator has
been found to be the best, only the results of this operator
are presented for Scenario C. The result is compared to a
classical, experience-based distribution of the user demand
over the technologies considered. Table VIII shows the
different results for both cases, optimal and experience-
based distribution. Note that a reduction of more than 400
Me in a nationwide network deployment is observed when
the optimal solution from CRO is considered. Moreover,
despite the fact of having worse coverage conditions than
in Scenario B, LTE spectrum is allocated to the 2600
MHz frequency band instead of the 2100 MHz one. The
CRO algorithm solves this disadvantage by routing more
traffic through LTE technology in order to make the most
of the eNodeB capacity and due to the fact that it is the
most efficient technology among the ones considered to
transfer data, see Table IX. The commented effect is not
observed in the experienced-based user distribution case,
where there is no user demand carried by LTE, because
no commercial LTE network is installed in Spain yet
(although there are announcements from Vodafone and
Yoigo of an incipient deployment in 2014), and therefore
the total investment cost is slightly lower than in Scenario
B.

4.5. Comparison with alternative meta-heuristics

The results obtained with the proposed CRO have been
compared to that of an Evolutionary Algorithm (EA) [31],
and a Teaching-Based-Learning Optimization (TBLO)
[32]. We have chosen these two meta-heuristics for a
comparison with the CRO since they are state-of-the-art
global methods for optimization, one well established and
known (EA) and the other one newly proposed, with high
potential (TBLO), that have shown very good results when
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tackling alternative optimization problems. In order to
carry out this comparison, the best solution found by the
CRO algorithm is considered, so the 2-swap and 3-swap
crossover and the brooding operators are used. To have a
fair comparison, these operators have been directly applied
to EA, and the TBLO has been also adapted to solve the
OSDP. The parameters of all the algorithms have been set
to be comparable, basically population size and number of
function evaluations. Table X shows the results obtained by
the different algorithms compared, in the three scenarios
considered. Note how the CRO obtains better results than
the EA and TBLO algorithms. The average differences
between the CRO and the algorithms for comparison are
(in terms of investment reduction) 2 million Euros with
respect to the EA solution and 5 million Euros with the
TBLO solution. Note that in all scenarios, the results have
been calculated considering a fraction Fc = 10, and then
nationwide deployment cost has been estimated. The CRO
is the best among the algorithms tested, which indicates
its excellent performance in this engineering optimization
problem. Moreover, an interesting point is that the three
meta-heuristics are able to improve the distribution from
an experienced user, so it seems that the use of this type
of approaches is a very good option in this problem of
network deployment.

5. CONCLUSIONS

In this paper the Optimal Service Distribution Problem
(OSDP) has been tackled. In this problem two different
aspects are considered: first, the optimal deployment of
a radio access network is solved. The optimization of
this deployment needs to fulfill a set of restrictions
according to user demand and type of technology to
be deployed. Second, the optimal distribution of the
input users’ demand, over the different technologies
available, is tackled. We propose a novel bio-inspired
optimization algorithm, the Coral Reef Optimization
Algorithm (CRO), based on coral reproduction and reef’s
formation. This optimization algorithm tries to obtain the
optimal distribution of the users’ demand that minimizes
the associated investment costs of the solution. The cost
estimation process uses of the data provided by a network
planning software. In the experimental section of the paper,
the CRO has been tested on three different scenarios,
implementing real-world restrictions. The results obtained
show a significant reduction of the total investment cost
of more than 400 Me when comparing the CRO solution
to that of a network deployment based on experience-
based service’s distribution values, in Spain. We have
also compared the performance of the CRO approach to
that of alternative meta-heuristics techniques, obtaining
good results. Future work is focused on evaluating the
performance of the CRO algorithm for different spectrum
allocations, mainly for LTE technology, etc.
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barth, F. López-Ferreras, and G. Esteve-Asensio,
“Novel heuristics for cell radius determination in
WCDMA systems and their application to strategic
planning studies,” EURASIP Journal on Wireless Com-
munications and Networking, vol. 2009, 2009.

28. J. E. Sánchez-Garcı́a, Extensión del algoritmo de
despliegue UMTS multibanda y algoritmo HSPA para
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Alcalá, 2012.

29. Spanish National Regulatory Authority (CMT,
Comisión del Mercado de las Telecomunicaciones),
“Global Annual Report,” 2011.

30. Ministerio de Industria Turismo y Comercio de
España, “Consulta pública sobre actuaciones en
materia de espectro radioeléctrico: Refarming en
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Table I. CRO optimization parameters.

CRO

Reef size 5 × 15

ρ 0.8
κ 3
Fb 0.98
Fa 0.05
Pa 0.001
Fd 0.05
Pd 0.01
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Table II. Services definition. mE stands for miliErlangs and VE-mE stands for Voice Equivalent miliErlangs.

Traffic A Voice Video Streaming Guaranteed Best SMS MMS MBAS
Call Data Effort

(mE) (mE) (VE-mE) (VE-mE) (VE-mE) (VE-mE) (VE-mE) (VE-mE) (Kbps)

90 13 2.48 2.48 1.08 1.08 2.48 2.48 428
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Table III. Scenario B: minimum service distribution to be allocated over the different technologies.

Service GSM UMTS HSPA LTE

Voice 0.25 0 0 0
Video-Call 0 1 0 0
Streaming 0 0.4 0 0

Guranteed-Data 0 0.4 0 0
Best-Effort 0 0.4 0 0

SMS 0.25 0 0 0
MMS 0.25 0 0 0
MBAS 0 0 0.75 0
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Table IV. Frequency resources definition.

Scenario A / B C

Technology Freq. Mode BW Freq. Mode BW
Band (MHz) (MHz) Band (MHz) (MHz)

GSM/EDGE 900/1800 Dual 8.75/18.7 900/1800 Dual 8.75/18.7
UMTS 2100 Mono 5 2100 Mono 5
HSPA 2100 Mono 5 2100 Multi 10
LTE 2100 - 5 2600 - 15
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Table V. Scenarios A and B investment costs for the optimal service distribution obtained by the CRO algorithm.

Crossover Operator Type of Investment Cost
Deployment (Me)

Scenario A Scenario B

1 Point Subset of districts 39.026 80.174
Nationwide 1832.036 2246.009

2 Points Subset of districts 37.983 79.887
Nationwide 1824.681 2240.157

2-Swap Subset of districts 27.91 79.382
Nationwide 1470.313 2236.716

3-Swap Subset of districts 27.46 79.586
Nationwide 1472.093 2235.265
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Table VI. Scenario B: CRO solution for the OSDP, considering different crossover operators vs Experience-based service distribution.

2 Points Crossover operator 2-Swap Crossover operator Experienced-based

GSM UMTS HSPA LTE GSM UMTS HSPA LTE GSM UMTS HSPA LTE

Voice 0.25 0.75 0 0 0.25 0.75 0 0 0.765 0.235 0 0
Video-Call 0 1 0 0 0 1 0 0 0 1 0 0
Streaming 0 0.4 0.266 0.334 0 0.4 0.432 0.168 0.2 0.8 0 0

Guaranteed-Data 0.017 0.4 0.376 0.207 0 0.4 0.436 0.164 0.2 0.8 0 0
Best-Effort 0.068 0.4 0.225 0.307 0 0.4 0.432 0.168 0.04 0.06 0.9 0

SMS 0.252 0.017 0.180 0.550 0.25 0 0.595 0.155 0.775 0.225 0 0
MMS 0.250 0.009 0.261 0.480 0.25 0 0.595 0.155 0.538 0.142 0.32 0
MBAS 0 0 0.75 0.25 0 0 0.75 0.25 0 0 1 0
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Table VII. Scenario B: Investment Costs (Me) for Optimal vs. Experience-based service distribution (Nationwide values).

CRO Optimized Experience-based deployment
1-Point 2-Points 2-Swap 3-Swap

Investment Cost (Me) 2246.009 2240.157 2236.716 2235.265 2779.792
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Table VIII. Scenario C: Investment Costs (Me) for Optimal vs. Experience-based service distribution.

CRO Optimized Experienced-based deployment
2-Swap

Investment Cost (Me) 2357.994 2768.270
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Table IX. Scenario C: CRO solution for the OSDP considering different frequency allocation figures.

2600 MHz 2100 MHz
GSM UMTS HSPA LTE GSM UMTS HSPA LTE

Voice 0.25 0.75 0 0 0.25 0.75 0 0
Video-Call 0 1 0 0 0 1 0 0
Streaming 0 0.4 0.083 0.517 0 0.4 0.432 0.168

Guranteed-Data 0 0.402 0.171 0.427 0 0.4 0.436 0.164
Best-Effort 0 0.4 0.083 0.517 0 0.4 0.432 0.168

SMS 0.25 0.014 0.237 0.499 0.25 0 0.595 0.155
MMS 0.25 0.014 0.245 0.491 0.25 0 0.595 0.155
MBAS 0 0 0.75 0.25 0 0 0.75 0.25
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Table X. CRO, EA and TBLO comparison in all Scenarios considered.

Scenario A
CRO 1472.0
EA 1474.8
TBLO 1478.1
Scenario B
CRO 2235.2
EA 2237.0
TBLO 2241.8
Scenario C
CRO 2357.9
EA 2359.4
TBLO 2463.5
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Figure 1. Growth in European Mobile Operators’ Total Revenues
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Figure 2. Flow diagram of the proposed CRO algorithm.
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Figure 3. Services distribution on a coral larva
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Figure 4. Crossover Operators: (a) 1 Point; (b) 2 Points; (c) N-Swap

Trans. Emerging Tel. Tech. 2012; 00:1–?? c⃝ 2012 John Wiley & Sons, Ltd. 23
DOI: 10.1002/ett
Prepared using ettauth.cls



Coral-Reef Optimization applied to the OSDP S. Salcedo-Sanz et al.

Figure 5. Outline of the corals’ health function calculation using the SMNPT tool.
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Figure 6. Optimized vs. Non-Optimized Nationwide RAN Investment Costs
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