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1. Introduction

Wind power is one of the most promising renewable energy
sources in the world [1,2], pushed by the crisis of fossil fuels and the
environmental concerns that their excessive use produce. Wind
power installed worldwide by the end of 2011 reaches a total of
238 GW, of which about 62 GW correspond to China, 47 GW to USA,
29 GW to Germany, 21 GW to Spain and 16 GW to India [3]. Wind
power penetration is rising year by year in many countries,
reaching a remarkable 26% in Denmark, 16% in Spain and Portugal,
12% in Ireland, and 9% in Germany [4]. Wind energy penetration in
other developed countries is smaller (USA 3.3% [5], Italy 4.2% or
France 2.8% [4]), though it is known that these figures will increase
a lot in the next few years.

Wind energy is mainly produced in large production facilities
called wind farms. In the past five years, new wind energy pro-
duction facilities in the world have grown about 25% each year, and
the forecast for 2013 is that the annual growth rate still remains a
remarkable 15%. The majority of wind farms are located in land
(onshore facilities), but wind farms located in the sea (offshore)
seem to be more productive, and many companies are betting on
this kind of facility when geographical conditions allow its instal-
lation. In fact, recent studies have reported a significant increment
in the installation of offshore wind farms over 30% with respect of
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previous years [6]. In Europe, these facilities have been installed for
more than 20 years ago, and nowadays represent a significant part
of wind energy production in countries such as Denmark, Sweden
or the Netherlands [7]. In addition, other studies have shown that
the potential of offshore wind energy in important economies such
as China [8] or Europe [9] is much larger than its onshore coun-
terpart. Following recent studies [7], the main advantages of
offshore wind farms are the availability of huge continuous areas
for developing major projects, the higher wind speeds at the sea,
less effects of turbulence or the elimination of visual impact and
noise issues, among others. On the other hand, there are also
several disadvantages with these facilities, such as more expensive
installation and connection to the electrical network or limited
access for maintenance operations, etc.

The increasing number of projects focussed on the installation of
new wind energy facilities, has had an immediate effect in the
research about wind farms’ design. Moreover, automatic wind farm
design based on optimization algorithms is nowadays a hot topic in
wind energy, with dozens of articles and research works published
recently. In fact, the pioneering work on automatic wind farm
design is due to Mosetti et al. [10], back in the 1990’s. In that paper,
a genetic algorithm was proposed to tackle the problem of the
optimal turbines layout in a wind farm. The model proposed in Ref.
[10] has served as inspiration to many other articles, for example,
the works by Grady et al. [11] or Emami et al. [12], that proposed
different improvements in the objective function and genetic op-
erators to obtain better search capabilities in the algorithms. Also
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dealing with evolutionary algorithms, the work by Mora et al. [13]
describes a variable-length genetic algorithm with novel pro-
cedures of crossover, that are very effective to obtain optimal wind
turbines layouts, including monetary cost as the objective optimi-
zation function. A similar approach using a hybrid evolutionary
algorithm was previously presented in Martinez et al. [14]. This
approach has been further studied recently in Refs. [15,16]. It is also
significant the work by Sisbot et al. [17], that proposed a multi-
objective evolutionary algorithm for a specific problem of wind
farm design in Turkey, and the works by Wang et al. [18], where
new improved wind and turbine models have been considered
within a genetic algorithm. Another work that deserves special
consideration is the one by Kusiak et al. [19], where a complete
study of the problem including very different aspects and as-
sumptions is considered. The authors solve the problem by
applying an evolutionary programming approach. Other important
works have been recently proposed based on evolutionary algo-
rithms, such as the one by Wan et al. [20] where a real-coded ge-
netic algorithm is proposed, the work by Huang [21] based on
hybrid genetic algorithms, or the work by Saavedra et al. [22],
where an evolutionary approach that considers wind farm shape
and orography is proposed. There are also other bio-inspired ap-
proaches (alternative to evolutionary algorithms), that have been
successfully applied to the wind farm design problem, for example
the paper by Wan et al. on Particle Swarm Optimization [23]| and
the work by Eroglu et al. based on Ant Colony Optimization [24]. An
excellent review of the most significant papers focus on onshore
wind farm design has been recently published by Khan and Reh-
man [25].

There are also other works specifically focused on the optimal
design of offshore wind farms using bio-inspired techniques. For
instance the works by Elkinton et al. [26—28], where a novel model
for the design of offshore wind farms is presented, and several ap-
proaches were compared in this problem. A greedy algorithm, a
genetic algorithm, a pattern search approach and a simulated
annealing techniques were tested in this problem. The work by Rivas
et al. in Refs. [29], is also relevant. In that paper the authors proposed
a simulated annealing algorithm to solve a problem of optimal tur-
bine sitting in offshore wind farms. In the work by Zhao et al. [30] the
authors presented a different approach for offshore wind farm
design, focussed on minimizing the connections between wind tur-
bines, considering a fixed layout of turbines. Finally, in a quite recent
paper by Pérez et al. [31], the authors have proposed a specific
approach to a problem of offshore wind farm design, based on
mathematical programming techniques, specifically a combination
of heuristic and gradient-based algorithms, that provides a good
solution to the design of a real wind farm in northern Europe.

This paper is focussed on offshore wind farm design with a new
optimization technique, the Coral Reef Optimization (CRO) algo-
rithm. The CRO is a novel bio-inspired meta-heuristic for optimi-
zation problems, based on an artificial simulation of the coral reefs’
formation and reproduction processes. The CRO algorithm emu-
lates different phases of coral reproduction and fight for space in
the reef, and finally produces an efficient algorithm for solving
difficult optimization problems. The proposed CRO approach can be
seen as a cellular-type evolutionary scheme, with superior explo-
ration—exploitation properties thanks to the particularities of the
emulated reef structure and coral reproduction. In this work we test
the performance of the CRO in the design of an offshore wind farm
in northern Europe, comparing its performance with that of alter-
native existing bio-inspired approaches. The results obtained show
that the CRO is a competitive algorithm to be considered in opti-
mization energy-related problems.

The rest of this article is structured as follows: the next section
presents the CRO algorithm in detail, including an introduction to

reefs and corals’ structure and reproduction and an analysis of
similarities and differences with other existing meta-heuristic al-
gorithms. Section 3 shows the performance of the CRO algorithm in
the design of an offshore wind farm. Finally, Section 4 ends the
paper by giving some concluding remarks.

2. The Coral Reef Optimization algorithm (CRO)

This section describes some important properties of corals and
coral reefs that will be simulated by the CRO approach. In order to
introduce the algorithm, some characteristics of corals and reefs are
provided. Details on the CRO implementation are provided at the
end of the section.

2.1. Corals and reef formation

A coral is an invertebrate animal belonging to the group phylum-
cnidaria, which also includes sea anemones, hydras or jellyfishes
[32]. In fact, a more detailed classification includes corals in the
Anthozoa class, together with sea anemones, sea pens or sea pan-
sies. These animals are characterized by their ability to subsist
either as individuals or in colonies of polyps, living attached to a
substrate. There are more than 2500 different species of corals,
living in shallow and deep waters, and each year new species are
found and described.

An important subclass of corals are reef-building corals, also
known as hermatypic or simply hard corals. Hard corals are usually
shallow-water animals that produce a rigid skeleton of calcium
carbonate, segregated from their base. A coral reef is formed by
hundred of hard corals, cemented together by the calcium car-
bonate they produce. Periodically, the polyp lifts off its basal plate
of calcium carbonate and secrete a new one, forming a tiny
chamber that will contribute to the coral’s skeleton. All polyps in
the reef build and add these chambers to the reef, so the reef will
grow upwards. Living corals grow on top of the skeletons of calcium
carbonate of their dead predecessors. A coral reef is usually formed
by corals living in colonies, or on its own. A colony is composed of a
single specie of coral, but a reef’s structure can comprise multiple
types of species. In fact, a coral reef finally ends up as a true
ecosystem, in which a diverse collection of animals and plants
interact with each other, as well as with their environment. In
addition to corals, many other animals and plants live in and from
the reef, such as algae, sponges, sea anemones, bryozoans, sea stars,
crustaceans (e.g. shrimps, crabs, lobsters), octopuses, squids, clams,
snails and other mollusca. And, of course, a huge variety of fishes
that find shelter and food in the reef.

In general, hard coral species require little space to settle and
grow. Although a priori the implementation of this settlement
procedure might be easy for a potential new member of the reef, in
practice free space is an extremely limited resource in the reef
environment [33]. As a result, species often compete with each
other or exhibit aggressive behavior to secure or maintain a given
plot of substrate [34]. Different strategies used by corals to compete
for the space have been thoroughly described in the literature
[34,35]. Among them, fast-growing is deemed as the most used and
simple strategy since it grounds on the fact that there are corals that
have evolved to yield a faster growth rate than others. When a fast-
growing coral sets near a slow-growing one, the former attacks the
latter by overtopping it. The underlying coral suffers from light
deficiency, thus affecting its ability to conduct photosynthesis and
to get into contact with food particles. As time evolves, overtopping
by fast-growing species Kkills the slower-growing species under-
neath. Other aggressive strategies carried out by some species of
corals include sweeper tentacles (i.e. detect and damage adjacent
coral colonies), mesenterial filaments (namely, enabling external
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digestion of neighboring colonies), and terpenoid compounds (coral
chemical warfare).

2.2. Coral reproduction

Corals can reproduce in two different modes: sexual or asexual.
In fact, an individual polyp may use both modes within its life time
[32]. Furthermore, sexual reproduction can be either external or
internal, depending on the coral species.

2.2.1. Sexual external reproduction: broadcast spawning

The majority of hard corals species resort to a sexual external
reproduction method known as broadcast spawning [36]: every
coral produces male and/or female (some species of corals are
hermaphrodites) gametes that are massively released out to the
water. Once the egg and sperm meet together, a larva (also called
planula) is produced. Planulae float in the water until they find a
proper space to attach and start growing a polyp [37]. In the ma-
jority of reefs, the phenomenon of coral spawning occurs as a
synchronized event. This timing is crucial for successful repro-
duction, since corals can not move to force reproductive encoun-
ters. There are different natural aspects that affect the timing of the
corals’ spawning, such as temperature, day length or temperature
change rate.

2.2.2. Sexual internal reproduction: brooding

Brooding is a method of internal reproduction used by some
species of corals. In this reproduction mode, some female polyps
contain eggs that are not released to the water. Instead, sperm
released by other male corals of the same species gets inside the
polyp and fertilizes the eggs, producing small planulae. These
planulae are released later through the mouth of the coral in an
advanced stage of development, so it becomes easier for these
planulae to set onto hard substrate without being attacked or
depredated. There has also been described a type of brooding
reproduction in hermaphrodite corals [38].

2.2.3. Asexual reproduction: budding or fragmentation

Budding is a form of asexual reproduction in corals: basically,
new polyps bud off from parent polyps to expand or begin new
coral colonies [39]. Budding occurs when the coral has grown

(a)

enough to produce budding. Fragmentation is a process similar to
budding, but it is caused by external phenomena (e.g. storms or
boats’ grounding), and usually a larger part of the coral is divided in
comparison to budding [40]. As such, in fragmentation a part of a
coral colony is separated from the parent polyps. Individuals
broken off this way from the main colony are able to keep growing
and finally establishing a new colony far way from the parent one if
conditions are favorable. It is important to note that both budding
and fragmentation processes produce polyps that are genetically
identical to the parent polyp/colony.

2.3. Reef longevity and causes of death

There are not reliable statistics on corals’ lifespan. However, it is
well known that coral colonies can live for several centuries. Corals
and coral reefs must face different hazards during their life. In larva
state, corals are massively depredated by fishes and other preda-
tors. However, the huge number of larvae produced in broadcast
spawning reproduction ensures that enough polyps settle in
favorable ground and start forming a colony. On the other hand,
coral polyps encounter many types of predators including sea stars,
parrot-fishes or butterfly-fishes. Human activities (e.g. fishing ac-
tivities, or industrial processes that increase ocean pollution) and
climate changes (increase of the oceans’ temperature, among
others) also contribute to the loss of living corals [41].

2.4. CRO implementation

Having these fundamentals on the corals’ reproduction and
formation in mind, the CRO algorithm tackles optimization prob-
lems by modeling and simulating all the distinct processes
explained in the above Section 2. Let A be a model of reef, con-
sisting of a N x M square grid. We assume that each square (i,j) of A
is able to allocate a coral (or colony of corals) E;j, representing
different solutions to our problem, encoded as strings of numbers
in a given alphabet Z. The CRO algorithm is first initialized at
random by assigning some squares in A to be occupied by corals
(i.e. solutions to the problem) and some other squares in the grid to
be empty, i.e. holes in the reef where new corals can freely settle
and grow. The rate between free/occupied squares in A at the
beginning of the algorithm is an important parameter of the CRO

Fig. 1. Coral reef simulation; (a) grid; (b) corals and holes in the reef.
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algorithm, which will be denoted in what follows as 0 < pg < 1.
Fig. 1(a) exemplifies this reef model using a 5 x 6 grid, whereas
Fig. 1(b) illustrates an initialization of the reef with corals and coral
colonies representing solutions to a given problem. Note that in this
example pp = 9/21 = 0.43. Each coral is labeled with an associated
health function f{E;;): Z — R, that represents the problem’s objective
function. Note that the reef will progress as long as healthier
(stronger) corals (which represent better solutions to the problem
at hand) survive, while less healthy corals perish.

After the reef initialization described above, a second phase of
reef formation is carried out by the CRO algorithm. To this end, a
simulation of the corals’ reproduction in the reef is done by
sequentially applying different operators. This sequential set of
operators is then applied iteratively until a given stop criteria is
met. Thus, we define different operators for modeling sexual
reproduction (broadcast spawning and brooding), asexual repro-
duction (budding), and polyps depredation. In both sexual and
asexual reproduction we give the conditions under which new
corals effectively get attached to the reef, or are depredated while at
the larvae phase:

1. Broadcast Spawning (external sexual reproduction): the
modeling of coral reproduction by broadcast spawning consists
of the following steps:

1.a In a given step k of the reef formation phase, select uni-
formly at random a fraction of the existing corals pj in the
reef to be broadcast spawners. The fraction of broadcast
spawners with respect to the overall amount of existing
corals in the reef will be denoted as F,. Corals that are not
selected to be broadcast spawners (i.e. 1—Fp) will reproduce
by brooding later on, in the algorithm.

1.b Select couples out of the pool of broadcast spawner corals in
step k. Each of such couples will form a coral larva by sexual
crossover, which is then released out to the water. Note that,
once two corals have been selected to be the parents of a

Reef initialization

Coral larvae formation by broadcast spawning

Coral larvae formation by brooding

Larvae setting or depredation

Reef formation

budding or fragmentation

stopping conditio
fulfilled?

Finish

Fig. 2. Flow diagram of the proposed CRO algorithm.

larva, they are not chosen anymore in step k (i.e. two corals
are parents only once in a given step). These couple selection
can be done uniformly at random or by resorting to any
fitness proportionate selection approach (e.g. roulette
wheel).

2. Brooding (internal sexual reproduction): as previously
mentioned, at each step k of the reef formation phase in the CRO
algorithm, the fraction of corals that will reproduce by brooding
is 1—Fp. The brooding modeling consists of the formation of a
coral larva by means of a random mutation of the brooding-
reproductive coral (self-fertilization considering hermaphro-
dite corals). The produced larva is then released out to the water
in a similar fashion than that of the larvae generated in step 1.b.

3. Larvae setting: once all the larvae are formed at step k either
through broadcast spawning (1.) or by brooding (2.), they will
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Fig. 3. Example of the problem considered: (a) Wind farm shape (Q); (b) Regular
location points; (c) Points embedded into the wind farm shape (final possible location
points to install turbines (Y)).
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try to set and grow in the reef. First, the health function of each
coral larva is computed. Second, each larva will randomly try to
set in a square (i,j) of the reef. If the square is empty (free space
in the reef), the coral grows therein no matter the value of its
health function. By contrast, if a coral is already occupying the
square at hand, the new larva will set only if its health function is
better than that of the existing coral. We define a number « of
attempts for a larva to set in the reef: after x unsuccessful tries, it
will be depredated by animals in the reef.

4. Asexual reproduction: in the modeling of asexual reproduction
(budding or fragmentation), the overall set of existing corals in
the reef are sorted as a function of their level of healthiness
(given by f(E;)), from which a fraction F, duplicates itself and
tries to settle in a different part of the reef by following the
setting process described in Step 3.

5. Depredation in polyp phase: corals may die during the reef
formation phase of the CRO algorithm. At the end of each
reproduction step k, a small number of corals in the reef can be
depredated, thus liberating space in the reef for next coral
generation. The depredation operator is applied with a very
small probability P, at each step k, and exclusively to a fraction
F4 of the worse health corals in A. For the sake of simplicity in
the parameter setting of the CRO algorithm, the value of this
fraction may be set to Fy = F,. Any other assignment may also
apply provided that F; + F; < 1 (i.e. no overlap between the
asexually reproduced and the depredated coral sets).

Fig. 2 illustrates the flow diagram of the CRO algorithm refer-
encing the two CRO phases (reef initialization and reef formation),
along with all the operators described above.

3. Design of offshore wind farms with the CRO

A problem of offshore wind farm design is tackled with the
proposed CRO algorithm. To show its performance, a comparison
with alternative meta-heuristic approaches is carried out. First, the
general problem is stated, and then the specific real case considered
is presented. Detail on algorithms parameters are also provided,
and the results obtained are finally shown.

Let us consider a wind farm shape Q, and a grid of possible
location points Y within Q (see Fig. 3 as an example). It is also
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cations to install wind turbines (in Universal Transverse Mercator (UTM) coordinates).

Table 1
Comparison of CRO, EA, DE and HS algorithms in the offshore wind
farm design problem.

Algorithm Energy production (GWh)
CRO 84.352
EA 84.256
DE 84.292
HS 84.284

considered that the possible location points are separated a mini-
mum security distance of 5D, so all the points in the grid are
feasible location to install wind turbines in this case, and no
correction is needed. A maximum number of wind turbines N is
predefined. The problem consists in obtaining the optimal location
of the N wind turbines in the wind farm S = (x1,y1) ..., (Xn,YnN) in
such a way that a measure of the energy production of the wind
farm is maximized. Note that S is defined as the best coral in the
reef (E(ij)) after the reef formation process defined above. More
specifically, we consider the average Annual Energy Production
(AEP) of the wind farm, obtained with the fixed N turbines
considered in the wind farm Q, and then define the following
health function for the corals in the reef:

a-AEP
S Clk)

where C(k) stands for the cost associated with specific wind turbine
k installation (this case considers the possibility that some turbines
have different installation costs than others in the wind farm, i.e.
some could be harder to be installed than others, due to its location,
model, etc.), N is the number of wind turbines installed and a is a
normalizing parameter (for comparing the AEP term with
Z;:’:1C(k)). Note that when the turbine installation cost C(k) is
considered equal for all the turbines, ie. C(k) = C, then
Zﬁ:ﬁ(k) = C-N, and Expression (1) is then equivalent to maxi-
mize the AEP produced by the evaluated layout E(i).

The specific problem tackled in this paper is the design of a real
offshore wind farm, located in the Baltic sea. Fig. 4 shows the
feasible points of turbine locations and their enveloping silhouette.
There are 73 possible locations for turbines in the considered wind

fEG)) = (1)

6.085
6.084
6.083

£ 6082

wv

[V

w®  6.081

£

°

5 6.08

o

o

>

6.079

6.078

6.077

6.076 . . . . . . )
4.63 4.631 4.632 4.633 4.634 4.635 4.636 4.637

x10°

x coordinates (m)

Fig. 5. Best layout obtained by the CRO algorithm (in Universal Transverse Mercator
(UTM) coordinates).



114 S. Salcedo-Sanz et al. / Renewable Energy 63 (2014) 109—115

6.085
6.084
6.083

£ 6082

wv

[0}

©  6.081

£

T

5 6.08

o

o

>

6.079

6.078

6.077

6.076 . . . . . . )
4.63 4.631 4.632 4.633 4.634 4.635 4.636 4.637

6
. x 10
x coordinates (m)

Fig. 6. Best layout obtained by the EA algorithm, the second best approach found in
this work (in Universal Transverse Mercator (UTM) coordinates).

farm, and the objective is to install 20 wind turbines in such a way
that the production of the wind farm is maximized. The Bonus
1.3 MW wind turbine model is considered as the one to be installed
in the wind farm, and we suppose an equal installation cost for all
then, so the final objective is to maximize the AEP produced by the
best coral (layout) found in the reef formation process, S. Note that,
in this particular case, the well-known Open Wind software ([42],
freely available) is able to provide a direct calculation of the
objective function. Open Wind provides efficient wakes calculation
and wind farm production estimation given the wind and terrain
characteristics of the wind farm, and the turbine model.

The proposed CRO algorithm’s performance has been compared
to that of alternative existing meta-heuristics. Specifically, an
Evolutionary Algorithm (EA) [43], a Differential Evolution approach
[44] and a Harmony Search algorithm [45]. All the compared al-
gorithms use the same encoding approach, i.e. integer numbers
between 1 and the maximum number of feasible location sites in
the wind farm. The EA includes a population of 50 individuals, with
tournament selection, two-point crossover and random mutation
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Fig. 7. Evolution of the best solution and average of the reef in the CRO algorithm.

with a probability of 0.1. The chosen DE approach is a classical DE/
rand/1/bin, with select weighting factor F = 0.8, 50 individuals are
also considered in the DE population. The HS algorithm considers a
Harmony Memory of 50 harmonies, with parameters (HMCR and
PAR) fixed to 0.6. Regarding the CRO approach, a 10 x 5 reef A was
considered, with an initial pg = 0.7 and parameter F, = 0.9 (ninety
percent of corals are considered as broadcast spawners). All the
compared algorithms have been run until the number of objective
function evaluations is 3000.

Table 1 compares the best solutions found by the four compared
algorithms. Note that the CRO approach produces the layout with
the best production, outperforming the EA, DE and HS algorithms,
and the differences in favor of the CRO seem significant. Fig. 5
shows the best layout obtained by the CRO approach. Note that
the wind turbines location tend to occupy the external-upper zones
of the wind farm. The wind rose in the zone of study has a pre-
dominant north-west component, and so the solution obtained is
logical, since the algorithm tries to locate the maximum number of
turbines at the upper left-hand of the wind farm, so these turbines
are not affected by wakes disturbances from other turbines. This
layout can be compared to the best obtained by an EA (Fig. 6), the
second best approach among the four analyzed in this paper. In this
layout the turbines also tend to occupy locations at the perimeter of
the wind farm, just as in the case of the solution obtained by the
CRO approach. However, it seems that, in this case, the solution
given by the EA has worse behavior in terms of wake effects than
the solution obtained by the CRO approach, so the AEP is affected.
Fig. 7 shows the evolution of the CRO (best coral and reef average),
where it can be seen the good convergence of the CRO to the best
solution found.

4. Conclusions

This paper discuses the performance of a novel bio-inspired
approach (the Coral Reefs Optimization algorithm, CRO) in a
problem of offshore wind farm design. The paper presents the main
characteristics of the algorithm, and different details on its imple-
mentation are given. The performance of the proposed CRO algo-
rithm is compared in a real problem of offshore wind farm design
with different alternative meta-heuristic algorithms, such as
Evolutionary Algorithms, Differential Evolution and Harmony
Search, obtaining better results in the problem discussed. The re-
sults obtained indicate that the CRO is a good option to solve
optimization problems related to energy in an accurate way.
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