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Abstract

This paper discusses the performance of a novel Coral Reefs Optimization – Extreme Learning Machine (CRO–ELM) algorithm in a
real problem of global solar radiation prediction. The work considers different meteorological data from the radiometric station at Mur-
cia (southern Spain), both from measurements, radiosondes and meteorological models, and fully describes the hybrid CRO–ELM to
solve the prediction of the daily global solar radiation from these data. The algorithm is designed in such a way that the ELM solves
the prediction problem, whereas the CRO evolves the weights of the neural network, in order to improve the solutions obtained. The
experiments carried out have shown that the CRO–ELM approach is able to obtain an accurate prediction of the daily global radiation,
better than the classical ELM, and the Support Vector Regression algorithm.
� 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Solar radiation prediction is an important problem with
direct applications in renewable energy. Solar is one of the
most important green sources of energy, that is currently
under expansion in many countries of the world, specially
in those with more solar potential, such as mid-east and
southern Europe countries (Kalogirou, 2014). An accurate
estimation of the energy production in solar energy systems
involves the accurate prediction of solar radiation, depend-
ing on different atmospheric variables (Khatib et al., 2012;
Inman et al., 2013; Sozen et al., 2004; Voyant et al., 2011).
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In recent years, several works have been developed to
try to predict solar radiation using machine learning tech-
niques and environmental parameters. They used different
input geographical and atmospheric parameters like lati-
tude, longitude, temperature, wind speed and direction,
daily global irradiation, sunshine duration or precipitation
(Mellit and Kalogirou, 2008; Mubiru, 2008). According to
Bilgili and Ozoren (2011), sunshine duration, air tempera-
ture and relative humidity are the most widely used mete-
orological parameters to predict daily solar radiation and
its components. All these parameters are well correlated
with the daily solar global radiation (Yacef et al., 2012).
In López et al. (2005) a Bayesian framework for artificial
neural networks, named as automatic relevance determi-
nation method, was developed to evaluate the more rele-
vant input parameters in modelling solar irradiation. In
fact, neural computation paradigm has been massively
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applied to this prediction problem, like in Benghanem and
Mellit (2010), where it is shown that Radial Basis Func-
tions (RBF) neural networks obtain excellent performance
in the estimation of solar radiation. In Dorvlo et al. (2002)
a comparison between Multi-Layer Perceptrons (MLPs)
and RBF neural networks in a problem of solar radiation
estimation is carried out. Experiments in eight stations in
Oman show the good results obtained with the neural
algorithms. A similar approach, also comparing MLPs
and RBFs (with different predictive variables) has been
recently proposed in Behrang et al. (2010). In this case,
the authors test the neural network with data obtained
in Iran. In Ji and Chee (2011) a hybrid approach based
on ARMA and time delay neural networks has been suc-
cessfully tested in data from a solar station in Singapore.
Other approaches that also use neural networks as predic-
tion methodology, include novel predictive variables, such
as satellite data (Senkal and Kuleli, 2009) or temperature
and relative humidity (Rehman and Mohandes, 2008).
Alternative machine learning algorithms, such as Support
Vector Machines (SVMs) have been also applied to solar
radiation prediction problems from meteorological
predictive variables (Chen et al., 2011; Zeng and Qiao,
2013). Specifically, a least-square SVM is proposed in that
work, comparing the results obtained with that of auto-
regressive and RBF neural networks. In Rahimikoob
(2010) the potential of multi-layer perceptron neural net-
works with back-propagation training algorithm is shown
in a problem of global solar radiation estimation in Iran.
Results comparing the performance of the neural net-
works with that of an empirical equation for global solar
radiation prediction (Hargreaves and Samani equation)
show good performance of the neural approach. In
Bhardwaj et al. (2013) a hybrid approach that includes
hidden Markov models and generalized fuzzy models
has been proposed and tested in real solar irradiation data
in India.

Recently, the so called Extreme Learning Machine
(ELM) has been introduced as an extremely fast training
method for multi-layer perceptron type neural networks
(Huang et al., 2006). The ELM is currently a state of the
art approach to train neural networks, quite extended
due to its excellent performance in many different prob-
lems. The ELM has also been successfully applied to solar
radiation prediction problems, like in Sahin et al. (2014),
where the ELM approach is applied to a solar radiation
prediction problem from satellite measures. In Alharbi
(2013) a case study of solar radiation prediction in Arabia
Saudi is discussed comparing the performance of artificial
neural networks with classical training and ELMs. In
Dong et al. (2014) a hybrid wavelet-ELM approach is
tested in a problem of solar irradiation prediction for
application in a photovoltaic power station. Finally, in
Salcedo-Sanz et al. (2013) a comparison of a Support
Vector Regression algorithm and an ELM is carried out
in a problem of direct solar radiation prediction, with
application in solar thermal energy systems.
In the last few years, different works have tried to
enhance the ELM performance by hybridizing it with evo-
lutionary computation algorithms. Basically, two main
approaches have been proposed: the first one, consists of
carrying out a feature selection approach using the ELM
as wrapper classifier or regressor (Chyzhyk et al., 2014;
Landa-Torres et al., 2012). In this case, the evolutionary
methods try to select the best set of features in terms of
the ELM performance (classification accuracy or probabil-
ity of error if we are dealing with regression problems). The
second approach, which is the one we are interested in this
paper, consists of using micro-evolution in order to obtain
the best set of weights and biases in the input layer of the
ELM (Zhu et al., 2005). This approach is quite sensitive
to the global search algorithm used, and an excess of evo-
lution may lead to overfitting and therefore to poor results.
However this, positive results have been recently reported
using micro-evolutionary algorithms (Lahoz et al., 2013),
particle swarm (Han et al., 2013) or evolutionary ensembles
(Wang and Alhamdoosh, 2013).

In this paper we discuss the performance of a hybrid
evolutionary-ELM algorithm in a problem of daily global
solar radiation prediction. Specifically, we explore the per-
formance of a recently proposed evolutionary-type
approach for global optimization, the so called Coral Reefs
Optimization (CRO) algorithm, hybridized with ELM in
this problem of solar radiation prediction. The CRO has
excellent properties of fast convergence to optimal values,
and can be used for carrying out evolution in ELM
weights, in order to enhance the performance of these
machines. In addition, we also explore in this work the
effect of including new atmospheric predictive variables
as inputs of the ELM. Meteorological variables such as
the total ozone content of the atmosphere, the aerosol opti-
cal depth and precipitable water (intrinsically related to
clearness index and Relative Air Mass Liou, 2002) are
included in the prediction system, together with variables
from atmospheric models such as the prediction of cloudi-
ness in the zone under study. In the experimental part of
the paper we show how the proposed CRO–ELM
algorithm is able to successfully solve this solar radiation
problem, improving the performance of the classical
ELM and SVMr approaches.

2. Daily global solar radiation prediction from novel

meteorological variables

In this section we describe the problem of daily global
solar radiation we tackle, including a brief description of
the variables involved in the prediction problem and the
objective data of radiation available for the study. Note
that the total set of meteorological variables included as
input predictive variables in this paper has not been, to
our knowledge, considered in other studies about radiation
prediction, it is a novel contribution of this research.

First of all, the objective variable (prediction target) for
this problem is the real global solar irradiation that reaches



S. Salcedo-Sanz et al. / Solar Energy 105 (2014) 91–98 93
the ground. Data from the Meteorological State Agency of
Spain (AEMET) in the radiometric observatory of Murcia
(Southern Spain, 38.0�N, 1.2�W) were used. Specifically,
global daily mean values from the measurements of a pyr-
heliometer mounted over an automatic solar tracker have
been considered. These radiation data ranges from the 1st
January 2010 to 31st December 2011, two years of daily
measurements.

The description of the predictive input meteorological
variables considered to tackle the global solar radiation
prediction is as follows:

It has been recently reported that Clearness Index
(horizontal global irradiation/horizontal extraterrestrial
irradiation) and Relative Air Mass are the more relevant
input variables to the neural network in problems of solar
radiation prediction (Mellit and Kalogirou, 2008; López
et al., 2005). To some degree or another, both parameters
are related to the two processes involved in the solar radia-
tion extinction: scattering and absorption. Considering this,
and taking into account that the aim of this study is to
predict global solar irradiation, we assume that the regressor
techniques considered would work more accurately if they
are trained with parameters related to atmospheric scatter-
ing and absorption processes. Scattering is a physical
process by which a particle in the path of an electromagnetic
wave continuously abstract energy from the incident wave
and re-radiates that energy in all directions. In the atmo-
sphere one of the most important particles responsible for
scattering are aerosols. They are known to be produced by
natural processes (volcanic dust, particles from sea spray,
windblown dust, etc.) as well as by human activity (Liou,
2002). Its concentration varies with locality and it generally
decrease rapidly with height in the troposphere. Then, in
order to take into account the presence of atmospheric aero-
sols, we consider the daily mean aerosol optical depth prod-
uct obtained from a Cimel CE318 sunphotometer as input
parameter. This instrument makes direct sun measurements
at wavelengths 340, 380, 440, 500, 670, 870 and 1020 nm.
with a field of view of 1.2�. In this case, the instrument
belongs to AEMET, it is located in the radiometric observa-
tory of Murcia and is part of the NASA Aerosol Robotic
Network (AERONET) (Holben et al., 1998).

The utilization of the aerosol optical depth is also inter-
esting because some aerosols can absorb solar energy
(Wang et al., 2009). Furthermore, the numerous gases that
make up the atmosphere can scatter and absorb solar radi-
ation to varying degrees. The permanent constituents
(mainly nitrogen, oxygen and argon) account for more
than 99.96% of the atmosphere by volume (Liou, 2002)
and their extinction effect could be consider as constant
when the period of study is short (in our case, 2 years).
Nevertheless, it is interesting to have information about
the variable concentration (in space and time) of two very
important gases in terms of energetic absorption: ozone
and water vapour.

Ozone concentration can be derived from Brewer spec-
trophotometer measurements. Thanks to this instrument
it is possible to derive total ozone amount from the ratio
of measured sunlight intensities at five wavelengths
between 306 and 320 nm with a resolution of 0.6 nm, where
the absorption by ozone presents large spectral structures
(Anton et al., 2008). Thus, we have used the daily mean
ground-based total ozone amount derived from the Murcia
Brewer spectrophotometer. AEMET operates a national
Brewer spectrophotometer network, having one of its
instruments located at the radiometric station of Murcia.

Water vapour present in the atmosphere could be
considered by selecting the total precipitable water (the
amount of liquid water, in mm, if all the atmospheric water
vapour in the column were condensed) product derived
from an atmospheric sounding as an input parameter. For-
tunately the radiometric observatory of Murcia also hosts
an upper-air sounding station. Although an atmospheric
sounding is launched every twelve hours (00:00 and 12:00
UTC) we have calculated the mean Total Precipitable
Water (TPW) value for every two soundings in order to
have the same temporal resolution as the Cimel and Brewer
data. Murcia TPW data are freely available on the internet
(http://weather.uwyo.edu/upperair/sounding.html).

For a predicting operative approach, it is necessary to
contemplate the presence of clouds, because its existence
over the area of study clearly affects the amount of solar
irradiation that reaches a ground surface (Mellit and
Kalogirou, 2008). For that, we have used data from the
numerical weather prediction model GFS (Global Forecast
System) maintained by the National Center for Environ-
mental Prediction (USA) (Kanamitsu et al., 1991).
Although its horizontal resolution is not too fine, this
model has the advantage that its data are freely available
on Internet. To overcome the spatial limitation, the daily
mean cloud amount forecasted by the GFS model was
taken at the grid point closest to the region of interest.

Finally, the theoretical extraterrestrial solar irradiation
calculated with the classical equations (Iqbal, 1983) has
been also considered as an input variable.

3. The hybrid CRO–ELM algorithm for solar radiation

prediction

In this section we present the hybrid CRO–ELM
algorithm proposed in this paper for solar radiation predic-
tion. The actual prediction of solar radiation can be carried
out with the ELM approach, and the CRO is used to
evolve the input weights of the network in order to improve
its performance. We briefly describe both algorithms and
also the encoding and methodology carried out to solve
this problem with the CRO–ELM algorithm proposed.

3.1. Basic Extreme Learning Machines

The ELM is a novel and fast training method for multi-
layer perceptrons type neural networks, recently proposed
in Huang et al. (2006) and applied thereafter to a large
number of classification and regression problems (Huang
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et al., 2011; Huang and Chen, 2007, 2008). The ELM’s
structure is similar to the network given in Fig. 1. The most
significant characteristic of the basic ELM training is that it
is carried out just by randomly setting the network weights,
and then obtaining the inverse of the hidden-layer output
matrix. The advantages of this technique are its simplicity,
which makes the training algorithm extremely fast, and
also its outstanding performance when compared to
alternative learning methods, usually better than other
established approaches such as classical multi-layer percep-
trons or support vector machines. Moreover, the universal
approximation capability of the ELM network, as well as
its classification capability, have been already proven
(Huang et al., 2006, 2012).

Mathematically, the ELM method can be described in
the following way: Given a training set @ , fðxi; tiÞ
j xi 2 Rn; ti 2 R; i ¼ 1; . . . ;N Tg, an activation function
gðxÞ and a number of hidden nodes (eN ), the ELM algo-
rithm is summarized in a number of steps:

1. Randomly assign inputs weights wi and bias bi, with
i ¼ 1; . . . ; eN .

2. Calculate the N T � eN hidden-layer output matrix H,
defined as

H ,

gðw1x1 þ b1Þ � � � gðweN x1 þ beN Þ
..
. . .

. ..
.

gðw1xNT
þ b1Þ � � � gðweN xNT

þ beN Þ

2
664

3
775: ð1Þ

3. Calculate the output weight vector b as

b ¼ HyT; ð2Þ

where Hy stands for the Moore–Pennrose inverse of matrix
H (Huang et al., 2006), and T , ½t1; . . . ; tNT �

T is the training
output vector.

Note that the number of hidden nodes eN is a free
parameter of the ELM training, and must be estimated
xN

x1

x2

nN~

hidden nodes
n1

Fig. 1. Outline of the neural network structure trained with the ELM
approach.
to obtain good results. Usually, scanning a range of eN
values is the most practical solution for this problem.

In this paper, we explore the possibility of slightly
evolving the ELM input weights in order to obtain a better
performance of the algorithm. We propose to use a recently
developed meta-heuristic with very good properties of con-
vergence to do this task, the Coral Reefs Optimization
algorithm (CRO).

3.2. The Coral Reefs Optimization algorithm

The CRO is a class of evolutionary meta-heuristic algo-
rithm based on corals’ reproduction and reefs formation,
first proposed in Salcedo-Sanz et al. (2013) and recently
applied to renewable energy problems (Salcedo-Sanz et al.,
2014). The CRO is based on the artificial simulation of a
coral reef, K, consisting of a N �M square grid. It is then
assumed that each square in the grid ði; jÞ is able to allocate
a coral (or colony of corals) Ni;j, that represents a given solu-
tion to the considered optimization problem. The CRO
algorithm is usually initialized at random by assigning some
squares in K to be occupied by corals (solutions to the opti-
mization problem tackled) and some other squares in K to
be empty, i.e. places in the simulated reef where new corals
can freely settle down and grow up in the future. The rate
between free/occupied squares in K at the beginning of the
algorithm is denoted as q. Each coral is associated with a
health function f ðNijÞ : I ! R, which represents the prob-
lem’s objective function. The CRO is based on the fact that
when the reef will progress, as long as healthier (stronger)
corals (which represent better solutions to the problem at
hand) survive, while less healthy corals perish.

The second step of the CRO is devoted to simulate a reef
formation, by means of different operators that mimic all
the processes occurring in a reef: corals’ reproduction, lar-
vae setting and depredation of unhealthy corals. This is
carried out by means of different operators:

1. Broadcast Spawning (external sexual reproduction):
this type of reproduction consists of the following
steps:
1.a. Select a fraction of corals in the reef (F b) to be

broadcast spawners. The rest of the corals in
the reef (i.e. 1� F b) will reproduce by brooding
at a later step in the algorithm.

1.b. Broadcast spawner couples are selected to repro-
duce, and each of such couples form one or two
coral larvae by sexual crossover. Note that, once
two corals have been selected to be the parents
of a larva, they are not chosen anymore in this
reproduction step.

2. Brooding (internal sexual reproduction): as previously
mentioned, the fraction of corals that will reproduce by
brooding is 1� F b. The brooding modeling consists of
the formation of a coral larva by means of a random
mutation of the brooding-reproductive coral (self-fertil-



Table 1
Variables considered in this problem of global solar radiation prediction. The source of each variable is also reported in this table.

Source Data Statistics Units

Cimel sunphotometer Aerosol Optical Depth Daily mean –
(at 340, 380, 440, 500, 670, 870 and 1020 nm)

Brewer spectrophotometer Total Ozone Amount Daily mean Dobson
Atmospheric sounding Total Precipitable Water Daily mean mm
GFS Cloud amount Daily mean %
Classical equations Theoretical extraterrestrial solar irradiation Daily mean kJ/m2

Pyranometer Measured global solar irradiance Daily mean kJ/m2

Table 2
Different statistical errors (RMSE, MAE and Bias, in (W/m2)) of the daily
prediction in the test set, by the classical ELM and the Support Vector
Regression approaches.

Algorithm RMSE Variance MAE Variance Bias Variance

Classical
ELM

0.07243 0.0015 0.0199 3:8� 10�4 5:9� 10�4 8:5� 10�6

SVMr 0.0692 0.02 0.0186 2:3� 10�4 4:8� 10�4 5:7� 10�6

Fig. 2. Prediction obtained with the CRO–ELM and the classical ELM
algorithm (random weights); (a) CRO–ELM and (b) classical ELM.
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ization considering hermaphrodite corals). The pro-
duced larva is then released out together with larvae
formed by broadcast spawning.

3. Larvae setting: This is the key step in the algorithm.
Once all the larvae are formed at a given step k (either
through broadcast spawning or by brooding), they
will try to settle down and grow up in the reef. The
process is the following: first, the health function of
each coral larva is computed. Second, each larva will
randomly try to set in a square ði; jÞ of the reef. If the
square is empty (free space in the reef), the coral larva
grows therein, no matter the value of its health func-
tion. On the other hand, if a coral is already occupy-
ing the square at hand, the new larva will set only if its
health function is better than that of the existing
coral. We define a number j of attempts for a larva
to settle down in the reef: after j unsuccessful tries,
it will be depredated by animals in the reef.

4. Asexual reproduction: in the modeling of asexual
reproduction (budding or fragmentation), the overall
set of existing corals in the reef are sorted as a func-
tion of their level of healthiness (given by f ðNijÞ).
Then, a small fraction F a of the best corals duplicates
and try to settle in a different part of the reef, by fol-
lowing the setting process described in Step 3. Note
that a maximum number of identical corals (l) may
be allowed in the reef.

5. Depredation in polyp phase: corals may die during the
reef formation phase of the CRO algorithm. At the
end of each reproduction step k, a small number of
corals in the reef can be depredated, thus liberating
space in the reef for next coral generation. The depre-
dation operator is applied with a very small probabil-
ity P d at each step k, and exclusively to a fraction F d

of the poorer healthy corals in K.
3.3. Problem encoding and methodology

Finally, the problem encoding and the methodology
followed in the experiments is described in this section.
The encoding of the problem in the CRO is the first issue
to be solved. In this case, we use the CRO algorithm to
carry out an evolution of the ELM weights, so we need
to encode these weights in the corals of the CRO. To do
this, it is necessary to set the number of neurons in the hid-
den layer of the ELM, since the number of weights depends
on this number of neurons. Previous experimental work



Table 3
Different statistical errors (RMSE, MAE and Bias, in (W/m2)) of the daily prediction in the test set, by the CRO–ELM approach, for different number of
generation in the evolution.

Algorithm RMSE Variance MAE Variance Bias Variance

CRO–ELM (3 gen) 0.0678 0.0028 0.0181 3:4� 10�5 4:7� 10�4 1:9� 10�6

CRO–ELM (5 gen) 0.0663 0.0037 0.0179 2:7� 10�5 4:5� 10�4 2:0� 10�6

CRO–ELM (10 gen) 0.0667 0.0024 0.0184 5:0� 10�5 4:7� 10�4 1:8� 10�6

CRO–ELM (30 gen) 0.0683 0.0019 0.0185 2:3� 10�5 4:8� 10�4 2:4� 10�6

Fig. 3. Dummy variable used to tackle the hourly solar radiation
prediction problem with the proposed CRO–ELM.

Table 4
RMSE (W/m2), hourly radiation prediction in the test set, by the classical
ELM and the CRO–ELM approach.

Algorithm RMSE Variance

Classical ELM 0.00136 1:8� 10�6

CRO–ELM (5 gen) 0.00125 1:6� 10�6
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with the ELM in this problem showed that 20 neurons in
the hidden layer produce good results in terms of error
prediction. We therefore set the number of neurons in the
hidden layer to 20 in all the experiments carried out.
Fig. 4. Prediction obtained with the CRO–ELM in the hourly time
horizon case (performance in the test samples, randomly obtained).
Taking into account the 11 input meteorological variables
we consider, the encoding of the CRO is a vector of 220
real numbers, in the range [�1,1].

Each coral in the CRO (encoding a different set of
weights in the input layer of the ELM), is evaluated by
means of the mean root square error provided by the
ELM, in a validation set. First, the available data of global
solar radiation (objective) and predictive meteorological
variables where divided into a training and test set (80%
and 20% of the data, respectively). The train set is divided
again in train and validation sets, in order to guide the
CRO search. After the CRO evolution, the best coral in
the reef (final solution to the problem), is evaluated by
the ELM in the test set, and this result is the one reported
as result of the CRO–ELM algorithm (see Table 1).
4. Numerical simulations and results

We have carried out different experiments in the data
described in Section 2, using the methodology described
in Section 3.3. First, we have applied the classical ELM
approach without CRO evolution of input weights (i.e.
random weights in the input layer). Table 2 shows these
classical ELM results, in terms of the mean root square
error, where the average of one hundred runs of the
algorithm is displayed. This table also shows the results
obtained by a Support Vector Regression algorithm
(Smola and Schölkopf, 1998), in 10 different permutations
of the data. A previous selection of the best hyper-param-
eters of the SVMr has been carried out in order to optimize
the algorithm’s performance in this problem. As can be
seen, the SVMr approach seems to perform better than
the classical ELM in terms of prediction error.

These results can be compared to that of the proposed
CRO–ELM, summarized in Table 2. Evolution for 3, 5,
10 and 30 generations in the 10 permutations of the data
were carried out and the results obtained have been
displayed in this table. Evolution for a larger number of
generations led to overfitting and poorer results than in
the classical ELM were obtained. As can be seen, the evo-
lution of the CRO–ELM approach during 10 generations
obtained the best results, improving those by the SVMr
and classical ELM. Micro-evolution for 3 generations
improved the results of the classical ELM, but did not
reach to the SVMr performance. Evolution for 30 genera-
tions of the CRO–ELM approach obtained worse result
than applying a small number of generations, what
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indicates that overfitting is starting to appear. On the other
hand, the result obtained with 30 generations was still bet-
ter than the one obtained with the classical ELM approach.

The performance of the CRO–ELM in terms of predic-
tion can be seen by depicting the real test data against the
best CRO–ELM prediction. We can compare this result
with the one obtained by the classical ELM approach
(random weights). Fig. 2(a) and (b) show these predictions.
It can be seen that both predictions are quite adjusted to
the real data, and the trend is perfectly captured by both
algorithms, though the CRO–ELM approach seems to be
slightly more accurate than the classical ELM. Both
approaches have difficulties in accurately following sudden
radiation peaks, and they are usually underestimated in the
predictions obtained (see Table 3).

4.1. Further discussion: application of the model to an hourly

solar irradiation prediction problem

The approach presented in this paper is focused on daily
solar irradiation prediction. However, in this final analysis,
we explore the possibility of reducing the prediction hori-
zon to hourly radiation prediction. The main issue with this
is that the input (predictive) variables are daily averaged, so
the challenge here is to adapt the system by including an
extra variable that models the solar cycle. We introduce
for this end a dummy variable, consisting of a sine, adapted
to the solar duration of the day. Fig. 3 shows an example of
the dummy variable used. In order to show the perfor-
mance of the system, we consider the 2010 winter months
(January, February and March), and discard the days with
missing data. A total of 48 days were finally available,
where we consider hourly solar radiation prediction. We
train the CRO–ELM approach using 80% of the hours,
whereas the test set is formed with the remainder 20% of
the data, randomly chosen. Table 4 shows a comparison
of the classical ELM with the proposed CRO–ELM in this
problem. Note that the RMSE is quite low, so the predic-
tion of the solar radiation from the input data is quite
good. The CRO–ELM is able to obtain a better prediction
than the ELM. Fig. 4 shows the hourly prediction obtained
with the proposed CRO–ELM algorithm in the test set. It
is possible to see how the prediction given by the CRO–
ELM fits really well with the measured solar radiation.

5. Conclusions

This paper presents a novel hybrid Coral Reefs Optimi-
zation – Extreme Learning Machine approach for a
problem of daily global solar radiation prediction. Differ-
ent new predictive variables have been considered, both
from measurements and also from meteorological models,
such as the daily mean aerosol optical depth product, the
ozone concentration, estimation of total precipitable water
data or the presence of clouds in the zone of study from a
numerical weather prediction model. These new predictive
variables are completely related to the global irradiation at
a given point, so it is intuitive that their inclusion in a
prediction model could make it accurate. On the other
hand, it has been shown that the novel hybrid CRO–
ELM approach proposed is very effective in solving this
solar radiation prediction problem, obtaining better results
than alternative state-of-the art methods such as classical
ELMs or Support Vector Regression algorithms. The test-
ing of the proposed prediction system has been carried out
in real predictive and objective data at radiometric station
of Murcia (Southern Spain).
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