
Computers & Operations Research 32 (2005) 749–765
www.elsevier.com/locate/dsw

Genetic programming for the prediction of insolvency in
non-life insurance companies

Sancho Salcedo-Sanza ;∗, Jos,e-Luis Fern,andez-Villacañasa,
Mar,2a Jes,us Segovia-Vargasb, Carlos Bousoño-Calz,ona

aDepartment of Signal Theory and Communications, Universidad Carlos III de Madrid 28911, Spain
bDepartment of Financial Economy and Accounting I, Universidad Complutense de Madrid, Spain

Abstract

Prediction of non-life insurance companies insolvency has arised as an important problem in the 6eld of
6nancial research, due to the necessity of protecting the general public whilst minimizing the costs associated
to this problem, such as the e7ects on state insurance guaranty funds or the responsibilities for management
and auditors. Most methods applied in the past to predict business failure in non-life insurance companies are
traditional statistical techniques, which use 6nancial ratios as explicative variables. However, these variables
do not usually satisfy statistical assumptions, what complicates the application of the mentioned methods.
Emergent statistical learning methods like neural networks or SVMs provide a successful approach in terms
of error rate, but their character of black-box methods make the obtained results di=cult to be interpreted and
discussed. In this paper, we propose an approach to predict insolvency of non-life insurance companies based
on the application of genetic programming (GP). GP is a class of evolutionary algorithms, which operates
by codifying the solution of the problem as a population of LISP trees. This type of algorithm provides a
diagnosis output in the form of a decision tree with given functions and data. We can treat it like a computer
program which returns an answer depending on the input, and, more importantly, the tree can potentially be
inspected, interpreted and re-used for di7erent data sets. We have compared the performance of GP with other
classi6ers approaches, a Support Vector Machine and a Rough Set algorithm. The 6nal purpose is to create
an automatic diagnostic system for analysing non-insurance 6rms using their 6nancial ratios as explicative
variables.
? 2003 Elsevier Ltd. All rights reserved.

Keywords: Genetic programming; Insolvency; Non-life insurance companies; Support vector machines; Rough set

∗ Corresponding author. Tel.: +34-91-624-5973; fax: +34-91-624-8749.
E-mail address: sancho@tsc.uc3m.es (S. Salcedo-Sanz).

0305-0548/$ - see front matter ? 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2003.08.015

mailto:sancho@tsc.uc3m.es

750 S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765

1. Introduction

Many 6nancial decisions involve the classi6cation of a set of observations (6rms, stocks) into one
or several groups of categories, what leads many researches to apply operational research methods
to management problems. There exists an extensive literature devoted to the study of classi6cation
problems in the 6nancial 6eld, i.e. the work by Chen and Yeh [1] dealing with 6nancial management
or the works by Dimitras et al. [2] and Tam [3] in business failure. In this paper, we focus on
the latter problem. Unlike other 6nancial problems, there are a great number of agents (auditors,
management, analysts, creditors and government) facing business failure, so research in this topic
has been of growing interest in the last decades (see [4,5]). Following [6], the number of bankrupt
6rms and the relative trend indicate the robustness for the economy of a country in a worldwide
scale, and the substantial costs associated to insolvency can become a national political issue. It has
long been recognized that there needs to be some form of supervision of such entities to attempt
to minimize the risk of failure. In fact, insolvency of non-life insurance companies have been a
concern of parties such as insurance regulators, investors, management, 6nancial analysts, banks,
auditors, policy holders and consumers. This concern has arised from the necessity of protecting the
general public against the consequences of insurers insolvencies, as well as minimizing its e7ects
on state insurance guarantee funds or the responsibilities for management and auditors. Nowadays,
Solvency II project is intended to lead to the reform of the existing solvency rules in European
Union. Therefore, developing new methods to tackle prudential supervision in insurance companies
is a highly topical question.

A large number of methods have been proposed to predict business failure (see [7–9]); how-
ever, the special characteristics of the insurance sector have made most of them unfeasible, and
just a few have been applied to this sector. Most approaches to prediction of failure in non-life
insurance companies are statistical methods, such as discriminant or logic analysis, which use 6-
nancial ratios as explicative variables. However, this kind of variables does not usually satisfy
any statistical assumptions, what introduces an extra di=culty for the use of statistical methods
in insurance business failure prediction. Alternatively, statistical learning approaches such as neu-
ral networks [3] or SVM [10] has been successfully applied to this kind of problems, achiev-
ing results in terms of classi6cation rate (less error in the classi6cation procedure) than tradi-
tional statistical approaches. However, their black-box character make them di=cult to interpret,
and hence the obtained results cannot be clearly analysed and related to the economical variables for
discussion.

In this paper, we propose an approach to predict insolvency of non-life insurance companies based
on genetic programming (GP) techniques. The 6nal purpose is to create an automatic diagnostic
system for analysing non-insurance 6rms using their 6nancial ratios as explicative variables. GP is
a special kind of evolutionary algorithm [11], which operates directly on the representation of the
problem, by codifying it as a population of LISP trees. The tree is itself a program with functions
and terminals. After generating the initial population, GP performs a genetic-like cycle (see [12])
of 6tness evaluation, selection of parents and reproductions by means of the application of genetic
operators to produce successive generation of trees. GP has many con6gurations in tree generation,
selection and variation. In particular, crossover is performed by randomly choosing nodes form each
parent and swapping them; while mutation consists in reproducing a node with a randomly grown
sub-tree.

S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765 751

There is a clear bene6t in using GP for data classi6cation: This type of algorithm provides a
diagnosis output in the form of a decision tree with given functions and data. We can treat it like a
computer program which returns an answer depending on the input, and, more importantly, the tree
can potentially be inspected, interpreted and re-used for di7erent data sets.

The rest of the paper is structured as follows: In Section 2 the main features of insolvency
prediction in non-life insurance companies, introduced as a particular case of the multiattribute
classi7cation problem, are given. In Section 3 a brief introduction to genetic programming is pro-
vided, whereas Section 4 describes the main characteristics of the GP used. Section 5 includes the
analysis of the test data used, the experiments performed in order to test the proposed algorithm
and the results obtained. The discussion of these results, and its comparison with a Support Vector
machine and a Rough Set approaches are also provided in this section. Finally, Section 6 closes the
paper with some concluding remarks.

2. Problem de�nition

In this paper, we tackle the prediction of non-life insurance 6rms failure, which can be con-
sidered a particular example of the so called multiattribute classi7cation problem. This problem
consists in the assignment of an object, described by values of attributes, to a prede6ned class of
category.

Mathematically a multiattribute classi6cation problem can be stated as follows:
Let {xi}, xi ∈Rn, i∈ {1; : : : ; l} a set of observations (objects) drawn from some unknown proba-

bility distribution P(x; y), and {yi} ∈ {−1; 1} (categories), a set of associated true labels.
A classi6cation machine is de6ned by a set of possible mappings x �→ f(x;), where a particu-

lar choice of parameters 	 generates what is called a “trained machine”. As example, in a general
neural network with 6xed architecture, 	 corresponds to the weights and biases of the neural net-
work, in the case of GP 	 are the number of nodes, branches and functions in nodes of the 6nal
tree.

The expectation of the test error for a trained machine can be de6ned as

R() =
(∫

V (y; f(x;)) dP(x; y)
)
; (1)

where V (·; ·) is a loss functional, P(x; y) is the unknown probability function the data was sampled
from and the function y = f(x;) is the classi6cation engine.
For the multiattribute classi6cation problem the loss functional can be de6ned as

V (y; f(x;)) = 1
2 |y − f(x;)| (2)

and the expected test error for a trained machine yields:

R() =
(∫

1
2

|y − f(x;)| dP(x; y)
)
: (3)

752 S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765

An empirical test error can be de6ned as

Remp() =
1
2l

l∑
i=1

|yi − f(xi ;)|: (4)

Note that Remp() is a 6xed number for a particular choice of 	 and for a particular training set
{xi ; yi}, since no probability distribution is involved in this calculation.

In the general case, the multiattribute classi6cation problem consists in 6nding the machine which
learn the mapping xi �→ yi with the highest generalization ability possible. According to the statis-
tical learning theory, the generalization error of a learning machine can be analysed considering the
machine’s capacity and its empirical risk [13]. The capacity factor represents the machine’s com-
plexity, whereas the empirical risk factor measures its quality. To ensure high generalization ability,
the tradeo7 between these two factors should be addressed. In this paper, the complexity of the GP
model is considered by controlling the depth of the developed trees, whereas the empirical risk is
considered by minimizing empirical test error Remp() de6ned above.

2.1. Prediction of business failure

The multiattribute classi6cation problem is applicable in a straight forward manner to the business
failure prediction problem, with {xi}; i=1; : : : ; l, a set of 6rms described by a set of n 6nancial ratios
(every component xij), and yi ∈ {−1; 1} a label which describes the state of the 6rm as “healthy”
yi = 1 or failed yi = −1.
Thus, the complete problem this paper faces consists in characterizing a 6rm as healthy or

failed, providing an automatic diagnostic system for detecting failed non-life insurance 6rms in the
future.

3. Brief overview of genetic programming

Genetic programming can be considered an extension of Genetic Algorithms [12], in which the
genetic population consists of computer programs, i.e. compositions of primitive functions and termi-
nals (we consider the reader familiarized with the main concepts of Genetic Algorithms, see [14,12]
for reference). Speci6cally, GP is able to evolve a computer program for solving, or approximately
solving, a large variety of classi6cation problems, from a wide variety of 6elds.

GP starts with a set of randomly generated computer programs composed of available program-
matic ingredients and genetically evolves the population using the principle of survival of the 6ttest
and an analogue of naturally occurring genetic crossover operation. Thus, GP provides a way to
search the space of possible computer programs to 6nd a program which solves, or approximately
solves, a problem [11]. The following description of a GP procedure can be found in [15]:

1. Generate an initial population of random computer programs composed of the primitive functions
and terminals of the problem.

2. Iteratively perform the following substeps until the termination criterion has been satis6ed:
2.1. Execute each program in the population and assign it a 6tness value according to how well

it solves the problem.

S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765 753

2.2. Create a new population of programs by applying the following three operations:
2.2.1. Reproduction: Copy an existing program to the new population.
2.2.2. Crossover: Create two new o7spring programs for the new population by genetically

recombining randomly chosen parts of two existing programs. This operator operates
on two parental computer programs producing two o7spring programs using parts of
each parent.

2.2.3. Mutation: Cut a branch of the tree o7 and substitute it by a randomly created one.
3. The single best computer program in the population produced during the run is considered the

solution to the problem and evaluated on a test set.

Thus, there are 6ve preparatory steps for applying GP to a given problem:

• determining the set of terminals;
• determining the set of functions;
• determining the 6tness function to be used;
• parameters and variables for controlling the run; and
• criterion for designating a result and terminating the run.

4. Genetic programming for solving the business failure prediction problem

The main task of GP in the business failure prediction problem is to evolve a decision tree
capable of discriminating between healthy and failed 6rms, based on 6rm’s 6nancial ratios. In
order to perform this study, we consider di7erent types of terminals, set of functions and 6tness
functions:

The representation of a solution for the problem provided by the GP algorithm is a decision tree.
Each node of this tree is a function node taking one of the values from the set {+; −; OR-TH; AND-
TH; NOT-TH; IFLTE}: “+” adds up two numbers, “−” subtracts them, “OR-TH” returns 1 when at
least one of the two inputs are positive and −1 when none of them is positive, “AND-TH” returns
1 when both inputs are positive and −1 when one of both of them are negative, “NOT-TH” returns
1 when its single input is negative and −1 when positive. Finally, “IFLTE” is a macro that has 4
entries, two input parameters (e.g. a and b) and two conditional nodes (e.g. c and d); when “a” is
larger or equal than “b” the macro evaluates “c” (it could be a function leading to a sub-tree for
example) otherwise it evaluates to “d”.

A tree which returns a positive (or zero) real value for a training or test case previously marked
as “healthy 6rm”, is said to have correctly classi6ed that case, and is labelled as a correct pos-
itive. Alternatively, when the tree returns a negative real value for the same case, it is taken
as a false negative. Trees that return positive (or zero) real values for cases marked as “failed
6rms” are known as false positives and correct negatives when the return value is a negative real
value.

The 6tness function is evaluated over a set of training or test cases. It is parameterized by the
number of correct positives CP, false positives FP, correct negatives CN, false negatives FN, the
total number of positives Npos and the total number of negatives Nneg. Several 6tness functions were
investigated.

754 S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765

The 6rst one seeks to maximize two values known as precision and recall of the failed 6rms.
This 6tness is given by

f1 = 1 − (1 · fN
rec + �1f

N
prec); (5)

where fN
rec = CN=Nneg and fN

prec = CN=(CN + FN), and 	1 and �1 are parameters in the range [0; 1]
which allow us to shift the emphasis of the selection on precision or recall.

This 6tness function has the drawback that only manages precision and recall values of failed
6rms. If a balance between failed and healthy 6rms parameters is required, the following function
should achieve better results in terms of balance between precision and recall:

f′
1 =

(fN
1 + fP

1)
2

; (6)

where

fN
1 = 1 − (1 · fN

rec + �1f
N
prec); (7)

fP
1 = 1 − (1 · fP

rec + �1f
P
prec) (8)

with fP
rec = CP=Npos and fP

prec = CP=(CP + FP).
Note that fN

1 is exactly the function f1 (we have renamed it as fN
1 here in order to maintain the

notation), and fN
rec, f

N
prec, f

P
rec and fP

prec stand for recall and precision values of failed and healthy
6rms, respectively. Note also that parameters 	1 and �1 have been consider to be equal for both
functions. Function f′

1 can be written in the following form:

f′
1 = 1 − 	1

2

(
CN
Nneg

+
CP
Npos

)
− �1

2

(
CN

CN + FN
+

CP
CP + FP

)
: (9)

The second 6tness function we analyse is designed to maximize the number of correct positives
(CP) and correct negatives (CN):

f2 = 1 − CP + CN
Npos + Nneg

: (10)

It is expected that this function also provides a balance between precision and recall.
Note that all 6tness functions considered lie in the range [0; 1] with 0 being the best possible

6tness, 1 the worst. The aim is, therefore, to minimize the 6tness functions above.
Another important characteristic of the GP is the tree depth considered. In this investigation we

test the performance of trees with two di7erent depths, trees of depth 2 and trees of depth 4.
The GP algorithm used in this work was Simple Genetic Programming in C (SGPC) [16].

4.1. A note on precision and recall

Precision and recall are two important parameters for measuring the behaviour of a classi6cation
system. Recall, de6ned as CN=Nneg for failed 6rms and as CP=Npos if one want to extract healthy
6rms, measures the ability of our classi6er for extracting all cases we are interested in, whereas

S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765 755

precision, (CN=(CN +FN) for analysing failed 6rms and CP=(CP+FP) for healthy 6rms) measures
the quality of the extracted cases.

Let us consider the problem of classifying insurance 6rms in healthy or failed, where we are
interested in detecting 6rms which will fail. A high decision value of recall means that our tree
is able to extract the majority of the 6rms which potentially will fail, although some healthy ones
can be classi6ed by the tree as failed. On the other hand, a high value of precision means that the
majority of the 6rms marked as failed by the tree are truly failed, although it is possible that the
decision tree has not detected all failed 6rms.

Depending on the application, a higher value of recall or precision may be required. However,
in the general case, a balance between precision and recall parameters should be provided, in order
to avoid capital losses due to investments in 6rms that will go bankrupt and, at the same time,
minimize the rejection of pro6table investments in healthy 6rms [17].

5. Experiments and results

5.1. Test data and input variables

In this section, we show the main characteristics of the data and variables that will be used to
test our algorithm. We have used the sample of 6rms employed by Sanchis [18]. This data sample
consists of Spanish non-life insurance 6rms data 5 years prior to failure. The 6rms were in operation
or went bankrupt between 1983 and 1994. In each period, 72 6rms (36 failed and 36 non-failed)
are selected. As a control measure, a failed 6rm is matched with a non-failed one in terms of size
(premiums volume). In addition, each 6rm is described by 21 6nancial ratios that have come from
a detailed analysis of the variables and previous bankruptcy studies for non-life insurance. Table 1
shows the 21 ratios which describe the 6rms. Ratios 15 and 16 have been removed in our study,
due to most of the 6rms not having “other income”; this reduces the total number of ratios to
19. Note that the special 6nancial characteristics of insurance companies require general 6nancial
ratios as well as those that are specially proposed for evaluating insolvency of insurance sector. The
ratios have been calculated from the last 6nancial statements (balance sheets and income statements)
issued 1 year before the 6rms declared bankruptcy. Thus, it has to be noted that the prediction of
the insolvency achieved by our method will be 1 year in advance.

In order to test the predictive accuracy of the GP, it is necessary to split the set of original data
to form a training set, and a holdout sample to validate the obtained model, i.e. the test set. It is
a well-known fact that over6tting of the training data set can occur, leading to a poor performance
of the generated tree on the test set. In order to avoid over6tting, a possible solution is to generate
multiple subsets from the original 6rms. The set of 72 6rms are split in 10 di7erent, randomly
generated training and testing sets (hereafter k-folds), every set consisting of 50 6rms for training
(25 failed and 25 non-failed) and 22 6rms for testing (11 failed and 11 non-failed). The results will
be averaged for the 10 di7erent k-folds.

5.2. Results

We have tested our algorithm for the data introduced above. First, we study the dependence of our
results on the algorithm’s free parameters: model for tree generation, model for selection, population

756 S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765

Table 1
De6nition of the ratios

Ratio De6nition

R1
Working Capital
Total Assets

R2
Earnings Before Taxes (EBT)

(Capital + Reserves)

R3
Investment Income

Investments

R4
EBT + Reserves for Depreciation + (Extraordinary Income − Extraordinary charges)

Total Liabilities

R5
Earned Premiums

(Capital + Reserves)

R6
Earned Premiums net of Reinsurance

(Capital + Reserves)

R7
Earned Premiums

(Capital + Reserves + Technical Provisions)

R8
Earned premiums Net of Reinsurance

(Capital + Reserves + Technical Provisions)

R9
(Capital + Reserves)
Total Liabilities

R10
Technical Provisions
(Capital + Reserves)

R11
Claims Incurred

(Capital + Reserves)

R12
Claims Incurred Net of Reinsurance

(Capital + Reserves)

R13
Claims Incurred

(Capital + Reserves + Technical Provisions)

R14
Claims Incurred Net of Reinsurance

(Capital + Reserves + Technical Provisions)

R15
Claims Incurred
Earned Premiums

+
Other Charges and Commissions

Other Income

R16
Claims Incurred Net of Reinsurance
Earned Premiums Net of Reinsurance

+
Other Charges and Commissions

Other income

R17
Claims Incurred + Other Charges and Commissions

Earned Premiums

R18
Claims Incurred Net of Reinsurance + Other Charges and Commissions

Earned Premiums Net of Reinsurance

R19
Technical provisions of Assigned reinsurance

Technical Provisions

R20
Claims Incurred
Earned Premiums

R21
Claims Incurred Net of Reinsurance
Earned Premiums net of Reinsurance

S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765 757

Table 2
Classi6cation accuracy in per cent of correctly classi6ed 6rms using Rough Set

Experiment 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 9 (%) 10 (%)

Failed 63.6 81.8 72.7 90.9 90.9 72.7 72.7 81.8 54.5 90.9
Healthy 81.8 54.5 63.6 54.5 63.6 63.6 63.6 45.4 72.7 63.6
Total 72.7 68.2 68.2 72.7 77.3 68.2 68.2 63.6 63.6 77.3

size, number of generations, maximum tree depth after variation and probabilities of crossover and
mutation. The behaviour we found while varying the di7erent SGPS parameters showed little variance
as to the model of initial tree generation (ramped growth was chosen as balance between random
creation at each depth and full growth). Population size was set to 100 trees (higher populations did
not show better results, comparing training and test sets). The number of generations was chosen
as 1000 in order to compare improvements in 6tness in train and data sets. Mutation and crossover
probabilities were set to 0.2 and 0.6, respectively (higher rates showed no improvement in mean
6tness while lower rates made the population converge in 6tness well before the 1000 generation
limit). Selection was performed through a tournament of size 2 and the depth of the trees was 6xed
to 2, but in an example of function f2 which was 4 (Table 2).
We have run the three algorithms for the 10 k-folds in the three de6ned functions. In function f1

we have used as values for 	1 and �1 0.8 and 0.2, respectively. In function f′
1 we have maintained

	1 = 0:8 and �1 = 0:2, using Eq. (9) in order to calculate its value. Function f2 maximizes the
number of CP and CN, its de6nition can be found in Section 4. Two variants of this function can
be de6ned, noting that outputs of the decision tree next to 0 can be misclassi6ed. Thus, f2 sharp
does not take this fact into account, whereas f2 soft consider a certain margin around the “0” border
to classify a sample as positive or negative. For 6tness function f2 soft, the GP was executed for
trees with initial maximum depth 2 and 4. This will allow us to compare performances based on
depth.

In addition to these 6tness functions, we also analyse the behaviour of the GP after applying a
feature selection procedure. In [10] the same data set has been analysed, applying a feature selection
process performed by means of a Genetic Algorithm. It has been shown that good results can be
obtained with only 3 ratios (R1, R9, R13), discarding the other 16. In this paper, we will use these
three ratios in order to compare the results obtained by the GP with it against the results obtained
with 19 ratios.

We compare the results obtained by our algorithm in all functions considered, 19 and 3 ratios,
with the results achieved by using a Support Vector Machine (SVM) [19]. SVM is a classi6cation
scheme which has gained prominence in the past couple of years. For linearly separable data, SVM is
known to provide the classi6cation frontier with maximum margin between classes. In non-linearly
separable data, SVM formulation involves kernel functions in order to perform the classi6cation.
Thus, the solution provided by the SVM is again of maximum margin in a higher dimensional
(possibly in6nite) space. For a detailed description of the SVM schema see [19,20]. The best results
obtained by the SVM were achieved using a polynomic kernel of order 4. In order to compare
results we have used the same sets of training and test 6rms for the three algorithms, and the results
were averaged for the 10 di7erent k-folds as mentioned above.

758 S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765

Table 3
Results for data with 19 ratios

GP SVM

f1 0.14(0.04) 0.40(0.16)
f1 recall 0.95(0.07) 0.60(0.18)
f1 prec. 0.53(0.06) 0.54(0.09)
f2 sharp 0.30(0.08) 0.45(0.1)
f2 sharp recall 0.66(0.27) 0.60(0.18)
f2 sharp prec. 0.53(0.11) 0.54(0.09)
f2 soft depth 2 0.41(0.05) —
f2 soft depth 2 recall 0.97(0.27) —
f2 soft depth 2 prec. 0.54(0.07) —
f2 soft depth 4 0.40(0.04) —
f2 soft depth 4 recall 0.90(0.25) —
f2 soft depth 4 prec. 0.52(0.08) —

Table 4
Results for data with 3 ratios

GP SVM

f1 0.15(0.04) 0.44(0.15)
f1 recall 0.93(0.07) 0.55(0.15)
f1 prec. 0.55(0.06) 0.58(0.14)
f2 sharp 0.30(0.08) 0.42(0.14)
f2 sharp recall 0.64(0.28) 0.55(0.15)
f2 sharp prec. 0.63(0.19) 0.58(0.14)
f2 soft depth 2 0.34(0.05) —
f2 soft depth 2 recall 0.61(0.27) —
f2 soft depth 2 prec. 0.64(0.19) —
f2 soft depth 4 0.36(0.08) —
f2 soft depth 4 recall 0.84(0.30) —
f2 soft depth 4 prec. 0.59(0.18) —

Tables 3 and 4 show the results obtained by the GP and SVM algorithms for 19 and 3 ratios,
respectively. Both tables show the values of the di7erent 6tness functions considered, as well as the
precision and recall values obtained with every 6tness function. Tables 5 and 6 show the results
obtained using 6tness function f′

1. In the case of the GP, the 6tnesses have been calculated for the
best performing tree of the training set, evaluated on the test set. These values are the mean of 10
independent runs for each of the 10 di7erent k-folds. In the case of the SVM schema, we have
calculated the 6tnesses values evaluating the SVM performance in the test set, once the machine
has been trained in the training set. The values displayed in the tables are the average of the results
obtained by the SVM in the 10 k-folds. Standard deviation for the k-folds (between parenthesis in
tables) was chosen as the measure of our error. It is easy to see that the 6tness values obtained by

S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765 759

Table 5
Results for data with 19 ratios f′

1

GP SVM

f′
1 0.31(0.05) 0.47(0.15)
fN

1 recall 0.93(0.06) 0.60(0.18)
fN

1 prec. 0.64(0.03) 0.54(0.09)
fP

1 recall 0.19(0.1) 0.50(0.08)
fP

1 prec. 0.70(0.3) 0.58(0.11)

Table 6
Results for data with 3 ratios f′

1

GP SVM

f′
1 0.38(0.05) 0.43(0.15)
fN

1 recall 0.66(0.1) 0.55(0.15)
fN

1 prec. 0.61(0.06) 0.58(0.14)
fP

1 recall 0.54(0.13) 0.59(0.18)
fP

1 prec. 0.62(0.1) 0.56(0.15)

the SVM are poorer than the GP results. Since the GP can be tuning for minimizing a given 6tness
function, and the SVM cannot, these results are somehow expected. However, these results indicate
that the GP approach is a valuable tool for classifying a set of data in such a way that a given
6tness measure to be minimized (recall measure in this case).

Note the di7erent precision and recall values obtained by the GP algorithm using functions f1

and f′
1. Using 6tness function f1, a high value of recall is obtained, with a low value of precision.

Using function f′
1 a balance between precision and recall values is obtained. The 6tness function

for the GP algorithm must be carefully chosen depending on the problem to be solved, and on the
analysts’ objectives.

We can compare the GP performance over 3 ratios and 19 ratios data sets. Fitness function f1

gives approximately the same value of 6tness for the 19 ratios data set and for the 3 ratios data set.
This results can be interpret as we can generate decision trees with similar performance only with
3 ratios instead of the initial 19 ratios data set.

We can also analyse the behaviour of the GP using the 6tness function f2 soft with depth 2 and
depth 4 (note that the SVM does not admit this analysis). In this case the results obtained with
the data set of 19 ratios outperforms the results of the data set of 3 ratios in precision and recall.
However, the 6tness value obtained with the 3 ratios data set is better than the value obtained with
the 19 ratios data set.

5.3. Analysis of the best decision trees obtained

Decision trees generated by the GP approach are a useful tool for the analysis of business
failure. Depending on the 6tness function, maximum depth allowed and the set of functions and

760 S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765

X17

X17

+

+

X11

X5 X6

+

+

++

+

X19

IFLTE

X1 X5 X7 X1

X6X5 X6 −

NOT−TH

Fig. 1. An example of two di7erent trees with the same value of 6tness, precision and recall.

X1

IFLTE

X1X11

X7

−

−

−

X19

AND−ΤΗ

X1

X4

AND−ΤΗ

X4 X4

Fig. 2. An example of a tree generated by the GP using the 6tness function f′
1 with values of 6tness, precision and recall

of 0.31, 83% and 62%, respectively.

terminals, the GP will generate very di7erent class of trees. Fig. 1 shows an example of two
di7erent trees which provide the same values of 6tness, recall and precision (0.36, 100% and
58%), using 6tness function f1. However, if we consider 6tness functions f′

1 the trees are dif-
ferent. Fig. 2 shows a decision tree with value of 6tness, recall and precision 0.31, 83% and 62%,

S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765 761

AND−ΤΗ

+

X1

X1X10X19

IFLTE

X5
X4

X18

X18

X1X10X19 +

IFLTE

+

Fig. 3. An example of a tree generated by the GP using the 6tness function f′
1 with values of 6tness, precision and recall

of 0.27, 73% and 73%, respectively.

whereas the tree displayed in Fig. 3 provide a values of 6tness recall and precision of 0.27, 73%
and 73%.

The ratios that have the highest frequency of occurrence in the generated decision trees (con-
sidering all experiments performed with 6tness function f′

1) are R1, R4, R5, R7, R10, R11, R18,
R20, R21. This indicates that these variables are highly discriminatory between solvent and insolvent
6rms in our sample. R1 and R4 are general 6nancial ratios and the others are speci6c for insurance
sector. Their meaning is:

(a) R1—One of the most important questions in order to assure the proper functioning of any 6rm
is the need of having su=cient liquidity. But in the case of an insurance 6rm, the lack of liquidity
should not arise due to “productive activity inversion” which implies that premiums are paid in
before claims occur. If an insurance 6rm cannot pay the incurred claims, the clients and public in
general could lose faith in that company. On the other hand, this ratio is a measure of 6nancial
equilibrium if it is positive as it implies that the working capital is also positive.
(b) R4—This ratio is a general measuring of pro6tability. Sometimes it would be better use cash-Vow
(the numerator of this ratio is cash-Vow variable plus extraordinary results) than pro6ts because the
6rst one is less manipulated than the second one.
(c) R5, R7 and R11—These rates are considered as “solvency ratios in strict sense”. The numerator
shows the risk exposure through earned premiums (R5 and R7) or incurred claims (R11). The
denominator shows the real 6nancial support because technical provisions are considered together
with capital and reserves. This demonstrates the need of having su=cient shareholder’ funds and the
need of complying correctly with the technical provisions to guarantee the 6nancial viability of the
insurance company. They belong to Insurance Regulatory Information System (IRIS) ratios. IRIS
ratios are tests developed by the National Association of Insurance Commissioners (EEUU) as an
early warning system.
(d) R10—This ratio shows what proportion of the shareholders’ funds (capital and reserves) rep-
resents the technical provisions. This con6rms the importance, from a solvency viewpoint, of the
adequacy of this relation in case the technical provisions were not su=cient to meet the future claims
obligations.

762 S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765

(e) R18—Combined ratio. In this case it is expressed net of reinsurance. This ratio is the traditional
measuring of underwriting pro6tability.
(f) R20 and R21—Both of them are IRIS ratios and they are regarded as loss ratios. They measure
the overall managerial e=ciency.

5.4. Comparison with ratios generated by means of a Rough Set approach

Rough Set Theory was 6rstly developed by Pawlak [21] as a mathematical tool to deal with the
uncertainty or vagueness inherent in a decision making process.

BrieVy, the Rough Set approach works by discovering dependencies between attributes in an
information table, and reducing the set of attributes by removing those that are not essential to
characterize knowledge. A reduct is de6ned as the minimal subset of attributes which provides the
same quality of classi6cation as the set of all attributes. A reduced information table may provide
decision rules of the form “if conditions then decisions”. These rules specify what decisions (actions)
should be undertaken when some conditions are satis6ed, and can be used to assign new objects to
a decision class by matching the condition part of one of the decision rule to the description of the
object.

We have performed the rough set analysis using the rough set system (ROSE). For a more detailed
description of the Rough Set theory and the ROSE software, see [22,23].

The reducts selected for the ten tests have been the following: {R3; R4; R9; R14; R17} for
tests 1, 2, 3; {R1; R3; R9; R14; R18; R19} for tests 4, 5, 6; {R1; R4; R9; R17; R20}
for test 7; {R1; R9; R13; R18; R20} for test 8; {R1; R9; R14; R17; R19} for test 9 and
{R1; R4; R9; R10; R13; R17} for test 10. They have been selected taking into account three
questions [24]:

(a) The reduct should have a small number of attributes as possible.
(b) It should have the most signi6cant attributes in our opinion for the evaluation of the
companies.
(c) After having selected a few reducts containing the most signi6cant attributes, the reduct chosen
should not contain ratios with a very high value for the autocorrelation coe=cient.

The classi6cations accuracies in per cent of correctly classi6ed 6rms for the ten tests are given in
Table 2. Note that the Rough Set achieved good results in terms of classi6cation error. However,
ROSE approach used does not allow extracting results in terms of precision and recall, but only in
terms of classi6cation accuracy. This fact makes di=cult a direct comparison between our proposed
method and Rough Set. Nevertheless, we can compare the ratios selected by the Rough Set with the
ratios achieved by the GP, in order to extract some conclusions about which are the best ratios to
be used in the problem.

Using the Rough Set approach, the ratios that have the highest frequency of occurrence (more than
40%) in reducts are R1, R3, R4, R9, R17, R18 and R19, whereas using the decision trees generated
by GP, the ratios that have the highest frequency of occurrence are R1, R4, R5, R7, R10, R11,
R18, R20, R21. Therefore, we can consider that R1, R4 and R18 ratios are highly discriminatory
variables between solvent and insolvent 6rms (they appear both in the solutions achieved by the GP
and the Rough Set). Consequently, those parties interested in evaluating the solvency of non-life
insurance companies should take into account the following questions: the importance of having

S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765 763

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Generation

F
itn

es
s

Mean training fitness
Test fitness

Fig. 4. An evolution of the GP for the training and test 6tnesses with trees of depth 2.

su=cient liquidity (R1), the need to generate su=cient pro6tability to follow a right self-6nancing
(R4) and, 6nally, the need to set a proper rating in order to calculate right premiums that take into
account the whole costs (R18).

5.5. Over7tting analysis

One important problem associated to GP is that the generated decision trees can be adapted
to the train set, giving poor results in the test set, this problem is known as over6tting of the
obtained solution. Over6tting is common in real problems as the one we tackle. Figs. 4 and 5 show
the evolution for the test and train 6tness for 19 ratios data set, using trees of depths 2 and 4,
respectively. These show the best run out of the 10 di7erent k-folds. Over6tting can be detected by
comparing the evolution of the training and test 6tnesses. Note that in both 6gures the 6tness in
the training set always decreases whereas the 6tness in the test set starts growing about generation
150 for trees of depth 4 and about generation 200 with trees of depth 2. In both cases over6tting
occurs, however, as the number of generation increases, trees of depth 2 keep training and test 6tness
curves closer than trees of depth 4, attaining comparable 6tness values. Therefore, trees of depth 2
are preferred to trees of depth 4 as they are smaller and easier to analyse. Logically, trees of depth
4 attain lower training 6tnesses by overclassifying the training set.

764 S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Generation

F
itn

es
s

Mean training fitness
Test fitness

Fig. 5. An evolution of the GP for the training and test 6tnesses with trees of depth 4.

6. Conclusions

In this paper, we have presented a genetic programming approach to predict insolvency of non-life
insurance companies. We have applied it to a real problem of classi6cation of non-life insurance
companies into healthy or failed, formed by 72 companies described by a set of 19 6nancial ratios,
comparing the obtained results with other classi6cation algorithms, a Support Vector Machine and
a Rough Set approach. We have shown the suitability of the genetic programming methodology as
a support decision method, in such a way that the algorithm proposed in this paper could be useful
for insurance regulators, investors, management, 6nancial analysts, banks, auditors, policy holders
and consumers.

Acknowledgements

The authors thank professor G. Laporte and the anonymous reviewers for their useful comments
and indications.

References

[1] Chen SH, Yeh CH. Using genetic programming to model volatility in 6nancial time series. In: Koza J, et al., editors.
Proceedings of the Second Annual Conference on Genetic Programming, 1997. p. 58–63.

S. Salcedo-Sanz et al. / Computers & Operations Research 32 (2005) 749–765 765

[2] Dimitras AI, Zanakis SH, Zopounidis C. A survey of business failures with an emphasis on prediction methods and
industrial applications. European Journal of Operational Research 1996;90(3):487–513.

[3] Tam KY. Neural network models and the prediction of bankruptcy. Omega 1991;19(5):429–45.
[4] Tam KY, Kiang MY. Managerial applications of neural networks: the case of bank failure predictions. Management

Science 1992;38(7):926–47.
[5] Dimitras AI, Slowinski R, Susmaga R, Zopounidis C. Business failure using rough set. European Journal of

Operational Research 1998;114(2):263–80.
[6] Wilson RL, Sharda R. Bankruptcy prediction using neural networks. Decision Support Systems 1994;11:545–57.
[7] Ambrose JM, Carol AM. Using best ratings in life insurer insolvency prediction. Journal of Risk and Insurance

1994;61:317–27.
[8] Barniv R. Accounting procedures, market data, cash-Vow 6gures and insolvency classi6cation: the case of the

insurance industry. The Accounting Review 1990;65(3):578–604.
[9] Zopounidis C, Dimitras A. Multicriteria decision aid methods for the prediction of business failure. Dordrecht:

Kluwer; 1998.
[10] Segovia-Vargas MJ, Salcedo-Sanz S, Bousoño-Calz,on C. Prediction of non-life insurance companies using Support

Vector Machines and genetic algorithms. In: Proceedings of X SIGEF Congress in Emergent Solutions for the
Information and Knowledge Economy, Le,on, Spain, October 2003, submitted for publication.

[11] Koza J. Genetic programming. Cambridge, MA: MIT Press; 1992.
[12] Goldberg DE. Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley;

1989.
[13] Vapnik V. Statistical learning theory. New York: Wiley; 1998.
[14] Michalewicz Z. Genetic algorithms + data structures = evolution programs. Berlin: Springer; 1996.
[15] Koza J. Genetic programming for economic modeling. Statistics and Computing 1994;4(2):187–97.
[16] Tackett WA. Genetic programming for feature discovery and image discrimination. In: Forrest S, editor. Proceedings

of the Fifth International Conference on Genetic Algorithms. Los Altos, CA: Morgan-Kaufmann; 1993. p. 300–9.
[17] Theodossiou P, Kahya E, Saidi R, Philippatos G. Financial distress and corporate acquisitions: further empirical

evidence. Journal of Business Finance 1996;23(5–6):699–719.
[18] Sanchis A, Gil JA, Heras A. El an,alisis discriminante en la previsi,on de la insolvencia en las empresas de seguros

no vida. Revista Española de Financiaci,on y Contabilidad 2003;32(116):183–233.
[19] Burges JC. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery

1998;2(2):121–67.
[20] Scholkopf B, Smola A. Learning with kernels. Cambridge, MA: MIT Press; 2002.
[21] Pawlak Z. Rough sets. Theoretical aspects of reasoning about data. London: Kluwer Academic Publishers; 1991.
[22] Predki B, Slowinski R, Stefanowski J, Susmaga R, Wilk S. ROSE: software implementation of the rough set theory.

Rough sets and current trends in computing, Lecture Notes in Arti6cial Intelligence, vol. 1424. Berlin: Springer,
1998. p. 605–08.

[23] Predki B, Wilk S. Rough set based data exploration using ROSE system. Foundations of intelligent systems, Lecture
Notes in Arti6cial Intelligence, vol. 1609. Berlin: Springer, 1999. p. 172–80.

[24] Segovia MJ, Gil JA, Heras A, Vilar JL, Sanchis A. Using Rough Sets to predict insolvency of Spanish non-life
insurance companies. Proceedings of Sixth International Congress on Insurance: Mathematics and Economics, Lisboa,
2002.

	Genetic programming for the prediction of insolvency in non-life insurance companies
	Introduction
	Problem definition
	Prediction of business failure

	Brief overview of genetic programming
	Genetic programming for solving the business failure prediction problem
	A note on precision and recall

	Experiments and results
	Test data and input variables
	Results
	Analysis of the best decision trees obtained
	Comparison with ratios generated by means of a Rough Set approach
	Overfitting analysis

	Conclusions
	Acknowledgements
	References

