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Abstract

This paper presents a portable and scalable approach for a class of constrained combinatorial optimization
problems (CCOPs) which requires to satisfy a set of constraints and to optimize and objective function
simultaneously. In particular, this paper is focused on the class of CCOPs that admits a representation in
terms of a square matrix of constraints C.
The algorithm consists of a hybrid neural-genetic algorithm, formed by a Hop6eld Neural Network (HNN)

which solves the problem’s constraints, and a Genetic Algorithm (GA) for optimizing the objective function.
This separated management of constraints and optimization procedures makes the proposed algorithm scalable
and robust. The portability of the algorithm is given by the fact that the HNN dynamics depends only on the
matrix C of constraints.
We show these properties of scalability and portability by solving three di<erent CCOPs with our algorithm,

the frequency assignment problem in a mobile telecommunications network, the reduction of the interference
in satellite systems and the design of FPGAs with segmented channel routing architecture. We compare our
results with previous approaches to these problems, obtaining very good results in all of them.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A class of important combinatorial optimization problems requires to satisfy a set of constraints
and to optimize (minimize or maximize) an objective function simultaneously. Problems of this
kind arise profusely in computational engineering and computer science 6elds. Scheduling problems
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[1,2], assignment problems [3–6,27] or problems of systems design [7–9], are some examples. In
this paper, we refer to this kind of problems as constrained combinatorial optimization problems
(CCOPs).

Several methods which have been reported as good approaches to concrete examples of CCOPs
can be found in the literature [10–14,30,31]. However, these existing algorithms have two main
drawbacks: 6rst, the majority of them show lack of scalability. This means that its performance is
poor when the size of problems grows. Second, algorithms proposed for CCOPs are usually not
portable. By “portable” we mean the algorithm which can be used in two di<erent CCOPs with
very few changes. The majority of the existing algorithms are designed to solve a particular prob-
lem, being necessary major changes in the algorithm’s structure to apply it to another CCOP, when
possible.

In this paper, we propose an algorithm for solving a class of CCOPs with very good properties
of scalability and very portable. The algorithm works by separating the ful6lment of the constraints
from the optimization process. A Genetic Algorithm (GA) is used for the optimization of the ob-
jective function, and a local procedure (Hop6eld neural network, HNN) for solving the problem’s
constraints. This separated treatment of objective function and constraints gives our algorithm the
desired properties of scalability. Thus, we will show that our algorithm outperforms the existing
algorithms in large and diKcult examples of CCOPs.

The characterization of the algorithms as “portable”, in the sense that could be used for a wide
variety of CCOPs with very few changes, comes from an accurate design of the local procedure
for solving the problem’s constraints. In order to do this, this paper focuses on the class of CCOPs
whose solutions admit a representation as an N ×M binary matrix X , with components xij ∈ {0; 1};
and problem’s constraints can be represented in an N × N integer matrix C, the so-called matrix
of constraints, where every element cij stands for the minimum separation in columns between two
elements of X . That is, any two elements in the solution, xik = 1 and xjl = 1, must ful6l:

|k − l|¿ cij

in order the solution to be feasible.
This class of CCOPs is characterized only by its matrix of constraints C, as well as its objective

function f(X ). 1 The HNN we use as local procedure is designed in such a way that its dynamics
only depends on the matrix C; this way, just by changing the matrix of constraints and the associated
objective function associated, our algorithm is directly applicable to any CCOP considered without
the need for any more adaptations. 2

The rest of the paper is structured as follows: in the next section the class of CCOPs we deal
with are de6ned and analyzed. In Section 3, the proposed algorithm is described, by studying
the HNN and the GA which form it. Section 4 shows the performance of the proposed algo-
rithm in terms of scalability and portability, by solving three CCOPs, and comparing the results
obtained with the results of di<erent algorithms in the literature. Finally, Section 5 closes the
paper.

1 Of course function f could depend not only on X but also in other parameters, di<erent for each problem. However,
we will denote it as f(X ) remarking its dependence on X .

2 Next section gives some examples of CCOPs that belong to the class of problems we focus on.
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2. Problem de�nition and analysis

The algorithm presented in this paper deals with CCOPs of the following characteristics: let ˝
be an optimization problem whose solutions can be represented as an N × M binary matrix, X . If
it is possible to characterize ˝ by an objective function f(X ) and an N × N matrix of constraints
C, where each cij represents the minimum distance in columns between 1s in X , i.e. if xil = 1 and
xjk = 1 then |l− k|¿ cij; ˝ belongs to the class of CCOPs we are interested in.
Mathematically, these CCOPs can be de6ned as:
6nd an N ×M binary matrix X , such as:

max(f(X )) (1)

and subject to:

|k − l|¿ cij if xik = 1; xjl = 1: (2)

Note that the problem is completely de6ned by the function f(X ) and the matrix of constraints C.
There are a lot of CCOPs that admit the above representation. The most classical example of this

characterization is the frequency assignment problem in a mobile communication network [3,5,7,15].
In this problem, every element of the matrix C; cij, represents the minimum distance between fre-
quencies in the communication network needed to avoid interferences, whereas f(X ) is the number
of frequencies assigned, see [3,4] for details.

Scheduling problems, such as broadcast scheduling in Packet Radio Networks (PRN) also can
follow this characterization, with cij the minimum allowed distance in slots of time between two
stations in the PRN, in order to avoid loss of packets [1,9].

We can cite other problems that admit this characterization, such as VLSI and FPGA design [16],
reduction of interferences in satellite systems [17,18] or an important class of problems which solu-
tions are permutations (Travelling Salesman Problem, Job Shop Scheduling) [19,20]. The constraints
in problems encoded as permutations may also be represented by a matrix C: 3

cij =

{ ∞ if i = j;

1 otherwise;
(3)

with this de6nition of the matrix C; X will have one 1 per row and column, representing a permu-
tation.

Thus, the class of CCOPs this paper manages includes a wide variety of important problems in
computational science.

3. Proposed approach

The algorithm we propose for solving the class of CCOPs mentioned, consists of a hybrid
global–local scheme, where a global algorithm looks for the optimization 4 of the objective function

3 Hereafter, the symbol ∞ in the de6nition of cij stands for any number greater than M .
4 This optimization could be minimization or maximization of the function, however, since a minimization process can

be seen as the maximization of the function f′ = −f, in this paper we will only consider maximization.
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and a local procedure manages the ful6lment of problem’s constraints. As global algorithm we use
a standard GA, due to several reasons. First, they are known to be robust search algorithms [21],
second, the standard GA codify the solutions as binary strings, so the solution matrix X can be
codi6ed in a GA as a binary string. This allows the construction of hybrid search schemes, mixing
global and local algorithms. The separation of the global search from the constraints ful6lment gives
our algorithm the desired properties of scalability, outperforming existing algorithms in large diKcult
CCOPs, as we will show in Section 4.

The properties of portability comes from an accurate design of the local search procedure.

3.1. The local search procedure

The local search procedure consists of a kind of HNN, whose dynamics only depends on the
matrix C, and on the initial states of the neurons. This Hop6eld network belongs to a class of
digital Hop6eld networks, where the neurons only can take the values 1 or 0, see [22] for further
details. The structure of the HNN can be described as a graph, where the set of vertices are the
neurons, and the set of edges de6nes the connections between the neurons. We map a neuron to
every element in the solution matrix X . In order to simplify notation, we shall also use matrix X
to denote the neurons in the Hop6eld network. The HNN dynamics can be described then in the
following way: after a random initialization of every neuron with binary values, the HNN operates
in serial mode. This means that only a neuron is updated at time, while the rest remain unchanged.
Denoting by xij(t) the state of a neuron in time t, the update rule is described by:

xij(t) = isgn




N∑
p=1
p �=i

min(M;j+ci;p)∑
q=max(1;ci;p+1)

q �=j

xpq


 ∀i; j; (4)

where the isgn operator is de6ned by:

isgn(a) =

{
0 if a¿ 0;

1 otherwise:

Note that the update rule only takes into account neurons xpq equal to 1 and within a distance of
cip in columns of the element xij being updated. Note also that in this updating rule, the neurons xij
are updated in its natural order, i.e., i=1; 2; : : : ; N; j=1; 2; : : : ; M . A slight modi6cation of this rule
is performed by means of updating the neurons in a random ordering of the rows (variable i). This
way the variability in the feasible solution found is increasing. Let �(i) be a random permutation
of i = 1; 2; : : : ; N . The new updating rule of the HNN results:

x�(i) j(t) = isgn




N∑
p=1
p �=�(i)

min(M;j+c�(i);p)∑
q=max(1;c�(i);p+1)

q �=j

xpq


 ∀i; j: (5)

The resulting updating rule runs over the rows of X in the order given by the permutation �(i), but
the columns are updated in natural order j = 1; 2; : : : ; M .
A cycle is de6ned as the set of N × M successive neuron updates in a given order. In a cycle,

every neuron is updated once following the given order �(i), which is 6xed during the execution of
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the algorithm. After every cycle, the convergence of the HNN is checked. The HNN is considered
converged if none of the neurons have changed their state in the cycle. The 6nal state of the HNN
dynamics is a feasible solution, in the sense that it ful6ls the constraints of the matrix C.

3.2. The global search algorithm

The optimization of the objective function is performed in our approach by means of a GA, in
the following way: a solution X is codi6ed in the GA as a (N × M)-length binary string. The
GA population is formed by a 6x number of (N × M)-length strings, �, which codify several
solutions to the problem. These solutions are called individuals of the population. The population is
then evolved through successive generations by means of the application of the genetic operators:
selection, crossover and mutation [21].

Selection is the process by which individuals are randomly sampled with probabilities proportional
to their 6tness values, which, in this case, is the value of f(X ). An elitist strategy, consisting in
always passing the highest 6tness string to the next generation, is applied in order to preserve
the best solution encountered thus far in the evolution. The selected set, of the same size of the
initial population, �, is subjected to the crossover operation. Firstly, the binary strings are coupled at
random. Secondly, for each pair of strings, an integer position along the string is selected uniformly
at random. Two new strings are composed by swapping all bits between the selected position and
the end of the string. This operation is applied to the couples with probability Pc less than one.

By means of the mutation operation, every bit in every string of the population may be changed
from 1 to 0, or vice versa, with a very small probability, Pm.
Finally, since crossover and mutation operators may cause the new string to be infeasible, this

string is set as the initial state of the HNN, and the result of the neural algorithm substitutes it in
the new population.

3.3. The complete algorithm

Given a CCOP de6ned by an objective function f(X ) and a matrix of constraints C, the complete
algorithm we propose can be represented in the following way:

Algorithm proposed: GA and HNN
Initialize GA population at random

while(max. number of generations not reached) do
for(every individual X )
run the HNN to obtain a feasible X
calculate f(X )

endfor
selection
crossover
mutation

end while
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The dynamics of the HNN is completely de6ned by the matrix of constraints C, whereas the GA
can be run knowing its 6tness function f(X ), with the initial population generated at random. Two
di<erent CCOPs de6ned by f1(X ); C1 and f2(X ); C2, respectively, will be solved by the algorithm
without any more changes than the routine for the calculation of f1(X ) and f2(X ).

4. Experiments

The test of the algorithm proposed should show its performance quality and also the good prop-
erties of portability claimed. In order to do that, we will solve three di<erent CCOPs using our
algorithm: the frequency assignment problem (FAP) in a mobile communication network, the reduc-
tion of interference in satellite systems by the reassignment of channels and the design of FPGAs
row-based segmented channel routing architecture. For every problem we give a brief description
of the problem and its mathematical formulation, the corresponding function f(X ) and matrix of
constraints C, as well as the solution obtained with our algorithm compared with other algorithms’
solution from the literature.

We have used the standard values for the GA parameters Pc = 0:6 and Pm = 0:01 [21] in all the
problems tackled, with a population size � = 50 individuals.

4.1. The FAP

4.1.1. Brief description
The Frequency Assignment Problem (FAP hereafter) in a mobile communications network can be

stated as follows: given a mobile communication network formed by N cells, a set of M available
frequencies and vector of frequencies requested of length N; v (vi the number of frequencies requested
by cell i), achieve an assignment of frequencies to every cell, in such a way that the system is free
from interferences.

The minimum distance between frequencies in the system in order to avoid interferences is given
by an integer matrix D. The solution of the problem can be represented as an N ×M binary matrix
X , where the rows represents the cells and the columns represents the available frequencies. An
element xij =1 means that the frequency j has been assigned to the cell i. Some articles which deal
with this problem are [3–5,7,15].
Mathematically the problem can be de6ned as:
6nd an assignment X , such as, if xik = 1 and xjl = 1:

|k − l|¿dij (6)

with the number of requested frequencies vi in every cell. The function f(X ) is the number of
frequencies which ful6l Eq. (6), i.e.

max


f(X ) =

N∑
i=1

M∑
j=1

xij


 (7)

Note that this problem has exactly the form we de6ned in Section 2 for our algorithm to be applied.
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Table 1
Main features of the FAP benchmark problems considered

Problem Number of cells (N ) Number of frequencies (M)

1 4 11
2 25 73
3 21 381
4 21 533
5 21 533
6 21 221
7 21 309
8 21 309

4.1.2. Results
In this problem the general matrix of constraints C is equal to the matrix D de6ned above. The

number of frequencies in every cell is computed in the routine for the calculation of f(X ). Only vi
frequencies are valid for every cell, the rest, if any, are not taking into account. In order to test the
performance of our algorithm in this problem we have tackled eight benchmark problems from [23].
The main characteristics of these problems are shown in Table 1. The compatibility matrices and
request vectors can be found in [23]. Our algorithm achieves the optimal result in every benchmark
problem considered. This shows the very good performance of our approach. However, in order to
have further comparison with other techniques, we have tested our algorithm in a simulated GSM
network, taking from [24]. In this network, calls are randomly generated in the communication
network following a Poisson distribution of parameter � (calls/sg), which is increased with time. It
is supposed that one call is served by one frequency, this way, the request vector is formed by the
number of calls in the network in a given time. When the number of calls in the network is higher
than the number of available frequencies, the call is rejected. The duration of every call is simulated
as a random variable which follows an exponential distribution, with an average duration of 50 s.
Fig. 1 shows the performance of our algorithm managing the frequencies requested in the network,
compared with two algorithms: a 6xed assignment of the frequencies and a HNN as the one in [23].
Note that our algorithm achieves better results than the other two algorithms (smaller probability of
rejecting a call).

4.2. The interference reduction in satellite systems problem

4.2.1. Brief description
This problem consists of, given two adjacent satellite systems (Fig. 2), reducing the inter-system

co-channel interference by means of rearranging the frequency assignment of carriers system #2,
whereas the assignment in system #1 remains 6xed, as references see [17,18]. This problem admits
a formulation in which the solution is represented by an N ×M binary matrix X̃ , where N stands
for the carriers in system #1 and M stands for the segments (divisions of a carrier) in system #2.
Since every carrier has a di<erent length in frequency, an N ×N matrix L is de6ned, in such a way
that lij stands for the minimum separation in segments allowed between carriers i and j. The 6nal
solution matrix X (M × M) is obtained from matrix X̃ (N × M) in a straight forward manner by
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Fig. 3. Example of expansion from matrix (X̃ ) of carriers–segments to matrix X of segments–segments.

expanding the rows from carriers (N ) into segments (M). Fig. 3 gives an example of this step. In
order to calculate the objective function f(X ), an interference matrix M × M;E, is de6ned. Every
element of this matrix, eij, stands for the cost in interference of associating a segment in system #2
to other segment in system #1. Thus, the problem consists of reassigning carriers in system #2 in
such a way that the total interference, or the largest, interference of the system to be minimum. The
mathematical formulation of the problem is as follows:
achieve X such that:

min


f(X ) =

M∑
i=1

M∑
j=1

eijxij


 (8)

subject to:

N∑
i=1

xij = 1; j = 1; : : : ; M (9)

and in such a way that the assignment ful6ls the constraints in L.
The constraints associated to this problem can be represented in a unique matrix C, which is

de6ned as follows:

cij =

{ ∞ if i = j;

lij otherwise:
(10)

4.2.2. Results
A set of Benchmark problems from [17] have been selected in order to test the performance of

our algorithm in this problem. The set of Benchmarks are formed by 6ve problems of increasing
diKculty: There are two easy problems, #1 and #2, one problem of medium diKculty, #3, and two
hard problems, #4 and #5. Table 2 shows the main characteristics of the problems.

Our algorithm solves the problem obtaining good quality solutions. Table 3 shows the results
obtained and a comparison with other two algorithms results, a Gradual Hop6eld Neural Network
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Table 2
Main features of the satellite benchmark problems considered

Problem # Carriers (N ) Segment (M) Range of carrier Range of interf.

1 4 6 1–2 5–55
2 4 6 1–2 1–9
3 10 32 1–8 1–10
4 10 32 1–8 1–100
5 10 32 1–8 1–1000

Table 3
Total and largest interference for satellite benchmark problems

Problem # BB [18] total GNN [17] total Ours total GNN [17] largest Ours largest

1 100 100 100 30 30
2 13 13 13 4 4
3 91 85 85 7 7
4 929 880 838 64 64
5 10330 8693 6851 640 640

(GNN) and a Branch and Bound algorithm (BB), for the Benchmarks problems tackled. Total
interference and largest interference 6tness measures have been considered. Note that our algorithm
achieves equal or better results than other algorithms. The di<erences are more pronounced in the
hardest problems, #4 and #5 with total interference as the objective function. This shows that our
algorithm is more scalable than existing algorithms for this problem. Fig. 4(a) and (b), shows the
evolution of the algorithm in the experiment where the best result in terms of total interference was
achieved, and its corresponding solution, for the hardest problem #5.

4.3. The FPGA segmented channel routing problem

4.3.1. Brief description
The FPGA Segmented Channel Routing Problem (FSCRP) is a CCOP in which a set of N nets

must be assigned to M tracks with L columns, in order to design a FPGA. Every track is divided
into several horizontal segments. There exist constraints among the nets, in such a way that not
all the nets can share the same track. Every net is described by a pair of leftmost and rightmost
columns to be interconnected, denoted lefti and righti for net i. In this article we consider that two
nets can share a track if they do not share any column. This approach is slightly di<erent from
the standard segmented channel routing problem, where nets only can share a track if they do not
share any segment in the channel. In addition an N ×M matrix of antifuses, 5 F , is de6ned, where

5 An antifuse is a programmable switch that can be located between two adjacent horizontal segments. Each antifuse
provide a low resistance bi-directional interconnection between segments if it is required, see [16] for details.
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Fig. 4. (a) Evolution of the algorithm in the experiment where the best result of total interference was obtained
(problem #5), (b) Best solution found (matrix X̃ ) by our algorithm in the same problem.

every element fij is 1 if there is an antifuse between columns j and j + 1 on track i. The goal of
the FSCRP is 6nding a conRict free track assignment of nets with the minimum total number of
programmed antifuses. See [16,25]. Fig. 5(a) shows an example of a FSCRP. There are six antifuses
(circles), 6ve nets, ten columns and three tracks. Note that nets #2 and #3 and nets #4 and #5 could
be assigned to the same track, due to no column is shared by them, however, net #1 must not share
track with nets #2, #3 and #4. Fig. 5(b) shows a feasible solution for this problem, of cost 2.
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Fig. 5. (a) FPGA segmented channel routing problem (the circles stand for antifuses). (b) A feasible routing solution.

Mathematically, the FSCRP can be formulated as follows:
Let X be a binary N ×M assignment matrix in which every component xij =1 means that net #i

has been assigned to track #j, and xij = 0 stands for no assignment. Let

wij =
righti−1∑
k=lefti

fik (11)

be the routing cost associated with net i when it is assigned to track j. In a channel with M tracks,
N nets and a matrix of antifuses F , FSCRP requires to 6nd an assignment X such that:

min


f(X ) =

N∑
i=1

M∑
j=1

wijxij


 (12)

subject to:
M∑
i=1

xij = 1 and
M∑
j=1

N∑
k=1
k �=i

dijkxijxkj = 0 ∀i; (13)

where dijk is 1 if nets i and k can share the same segment on track j, and 0 otherwise.
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Table 4
Main features of FPGA benchmark problems

Problem # Tracks (M) Columns (L) Nets (N ) Avg. net length #fuses

1 8 30 32 4.96 47
2 8 30 32 5.12 78
3 8 30 32 6.06 84
4 16 48 86 5.97 143
5 16 48 86 6.39 156
6 16 48 86 6.2 175

Table 5
Comparison of the results obtained by our algorithm and the two greedy algorithms considered for the FPGA instances

Problem # Ours m-FSCR l-FSCR

1 11 13 15
2 38 43 42
3 39 45 44
4 74 N/A 86
5 83 N/A N/A
6 91 N/A N/A

Taking into account the de6nitions above, it is possible to describe a given FSCRP instance in
terms of an N×N matrix of constraints, C, where every element cij stands for the minimum distance
required between nets i and j, and it is de6ned as:

cij =




∞ if i = j;

0 if (i 	= j) and [(lefti¿ rightj) or (leftj¿ righti)];

1 otherwise:

(14)

4.3.2. Results
In order to test the performance of our algorithm in this problem, six instances have been generated

following the indications given in [16]. Table 4 shows the speci6cations of the simulated instances.
The results obtained by our algorithm are compared with the results obtained by two greedy algo-
rithms taken from [26], which have been used previously for comparison in the literature. The 6rst
greedy algorithm, so-called m-FSCR, sequentially assigns each net to one track with the minimum
cost among the available tracks, in descending order of net length. The second greedy algorithm,
l-FSCR, assigns each net from leftmost to rightmost nets. Both heuristics incorporate a backtracking
procedure to cope with the case of no available track for a net can be found.

The results obtained by our algorithm, and its comparison with the results obtained by the two
greedy algorithms considered, are shown in Table 5. The symbol N/A means that no feasible solution
was found by the corresponding algorithm. Note that our algorithm 6nds a feasible solution in every
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problem, whereas m-FSCR only achieves a feasible solution in instances #1,#2 and #3, and l-FSCR
found a feasible solution in instances #1, #2, #3 and #4. In all of them our algorithm outperforms
both greedy algorithms, as can be seen in Table 5.

Fig. 6 shows the evolution of our algorithm in instance #2, (best total 6tness of the population).
Note how the best solution obtained by our algorithm is improved along the generations by the GA.

4.4. Some remarks on the performance of the digital HNN

The HNN used in this paper is a fast digital network, with very good properties of convergence.
In this section we provide some insight into the performance of the HNN proposed, by evaluating
it on the satellite interference reduction problems given in Section 4.2.
First, we have tested the properties of convergence of the HNN, by launching 1000 nets for each

problem, and computing the number of unfeasible solutions achieved. Note that a solution for a given
interference reduction problem is unfeasible only if there is any carrier in system #2 not assigned to
the corresponding segments in system #1. Fig. 7 shows the results obtained: in problems #1 and #2
all the HNNs launched provide a feasible solution, as expected, since the size of these problems is
small. In problems #3, #4 and #5 the percentage of convergence to feasible solutions was similar,
about 98%. These results show that the HNN achieves a feasible solution in the majority of runs,
starting from an unfeasible solution.

Second, we analyze the speed of convergence of the network. In order to do this, we analyze
the solutions provided by the HNN to the interference reduction problem #5. In this problem, once
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Fig. 7. HNN percentage of convergence in satellite interference reduction problems considered, #1–#5.
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the HNN provides a feasible solution, we have calculated the amount of cycles 6 that the HNN has
needed for reaching the convergence. Fig. 8 shows that the 75% of the HNNs launched for solving
problem #5 converged in 3 cycles. Over the 23% of the networks launched converged in 4 cycles,
and only about the 2% of the networks run converged in 5 cycles. The new updating rule introduced
in Section 3.1, does not modify these values, because it only changes the order of updating, not the
structure of the algorithm.

In real time, the complete algorithm (HNN and GA) solved the problems #1 and #2 within
a few seconds, and problems #3, #4 and #5 in about 2 min. The total time consumed by the
algorithm strongly depends on the maximum number of generations of the GA. Depending on the
problem, the number of generations in which the algorithm can be considered converged varies. For
solving problems #3, #4 and #5 we obtained very good solutions using a maximum number of 600
generations for the GA.

5. Conclusions

In this paper, a portable and scalable algorithm for a class of constrained combinatorial optimiza-
tion problems (CCOPs) has been presented. The algorithm consists of a bi-dimensional Hop6eld
neural network (HNN), which depends on a matrix C of constraints. It is hybridized with a genetic
algorithm (GA) for optimizing the problem’s objective function.

We have shown that there are CCOPs which admit a representation in terms of an objective
function f(X ) and a matrix C of constraints. This fact ensures the portability of the algorithm,
since no modi6cation in the HNN is needed for managing the problem’s constraints. The scalability
of the algorithm is given by the separate management of constraints and optimization process.

We have tested the performance of our algorithm in three di<erent CCOPs, outperforming previous
algorithms on them, and showing the portability and scalability of our approach.
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