
Computers & Operations Research 32 (2005) 1761–1776
www.elsevier.com/locate/dsw

A two-phase heuristic evolutionary algorithm for personalizing
course timetables: a case study in a Spanish university

Ricardo Santiago-Mozos, Sancho Salcedo-Sanz∗, Mario DePrado-Cumplido,
Carlos Bousoño-Calz1on

Department of Signal Theory and Communications, Universidad Carlos III de Madrid,
Leganes, Madrid 28911, Spain

Abstract

This paper presents, as a case study, the application of a two-phase heuristic evolutionary algorithm to
obtain personalized timetables in a Spanish university. The algorithm consists of a two-phase heuristic, which,
starting from an initial ordering of the students, allocates students into groups, taking into account the student’s
preferences as a primal factor for the assignment. An evolutionary algorithm is then used in order to select
the ordering of students which provides the best assignment.

The algorithm has been tested in a real problem, the timetable of the Telecommunication Engineering School
at Universidade de Vigo (Spain), and has shown good performance in terms of the number of constraints
ful6lled and groups assigned to students.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Timetabling is a problem that most universities in the world must face year after year [1–4]. The
basic timetabling problem in a university consists of 6nding time slots for a set of events (exams
or subjects for example) so that students can attend all respective events [4–6]. The de6nition
of a timetabling problem usually di?ers from one institution to another, as every university has
di?erent necessities and peculiarities for subject registration, exams or classes, which in many cases
vary from year to year [7,8]. Thus, a large number of variants of the timetabling problem can
be found in the literature, which di?er from each other both in the type of institution involved
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(universities, high schools) and in the type of constraints considered [7]. Two types of constraints
can be de6ned in every timetabling problem: 6rst, the constraints which are basic for the feasibility
of the timetable obtained are normally called hard constraints. Second, the constraints which do not
a?ect the feasibility of the solution found, but their ful6lment makes it more appropriate in terms
of some de6ned criteria. These constraints are usually called soft constraints [6].

There is a vast amount of literature devoted to the timetabling problem, where several algo-
rithms and heuristics have been proposed, each tackling a di?erent aspect of the problem. For
instance, there are a number of interesting surveys of existing timetabling methods and applications
[4,5,9–11]. These works represent the e?ort of the scienti6c community on timetabling over the last
20 years. Among the methods used to solve the timetabling problem we highlight the Constraint-
based approaches, which have been used to solve some instances of the timetabling problem in
[12–14] or [15]; the Sequential methods, mainly graph coloring algorithms, [4,7] which have been
used to tackle timetabling problems in the last few years; and above all the so called emergent algo-
rithms such as heuristics and meta-heuristics (genetic algorithm, tabu search, simulated annealing),
which have been applied to timetabling for searching large classroom scheduling [16], for managing
high-school timetables [17] or in some other works like [6,18–21,32,33]. In the last few years there
has been increasing research work on the application of these emergent algorithms to timetabling
problems.

Finally, we would like to highlight a few works which consider some preferences of students as
soft constrains of the problem. For example Rudov1a et al. [22,23] propose an approach which uses
annotations in variables in order to solve the problem’s hard constraints and manage the student’s
preferences at the same time. In [24], an approach to soft constraints management in timetabling
problems using constraint logic programming is discussed. We also take into consideration the
work by Paechter et al. [25], in which they debate certain preferences of students when solving the
timetabling of an entire university by means of an evolutionary algorithm.

In this paper we present the application of a two-phase search heuristic evolutionary algorithm
in a real university timetabling problem: The two-phase heuristic has been speci6cally designed for
timetabling, and is able to obtain feasible personalized timetables starting from a given ordering of
students. The performance of the two-phase heuristic depends on the initial ordering of the students,
so the approach is completed by an evolutionary algorithm (EA). This looks for the student ordering
and provides a better solution in terms of student’s preferences and other characteristics of the
timetables (mainly compactness and non-priority subject assignment, which will be de6ned below).

This algorithm was applied to a real timetabling problem in a Spanish university: School of
Telecommunications Engineering, Universidade de Vigo (Galicia, Spain), where the personalized
timetables for 1301 students of the school were obtained by means of our algorithm. We will show
that it was able to 6nd complete personalized and feasible timetables, where the majority of student’s
petitions were granted.

The structure of the article is as follows: Section 2 brieIy introduces the problem and its signif-
icance for a large range of universities. We also provide a model of the organization of teaching
in Spanish faculties which is used to de6ne the problem. In this section the complete mathematical
de6nition of the problem is also given, describing the main constraints and goals of the problem.
Section 3 describes and analyzes the proposed algorithm, whereas Section 4 shows the results of
the simulations performed in order to test it in a real case. Section 5 concludes the paper and o?ers
some 6nal remarks.
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2. Problem de�nition

2.1. Personalizing timetables

In this section we brieIy describe the importance of personalizing timetables based on the case of
some Spanish universities, and we also formulate the problem. First, we describe how the teaching is
organized in several Spanish universities. Second, we elaborate a general description of the problem
and go on to give a mathematical description of it.

The majority of Spanish faculties o?er the possibility of freely choosing the number of subjects
a student wishes to study over a year. It is common for students to choose subjects belonging to
di?erent courses (e.g. subjects belonging to the 6rst and second course of a given degree), usually
in science and technology faculties. 1

In order to focus the problem, we consider the following scenario, which models the organization
of teaching in a large number of faculties and schools in Spain: 2

(1) The faculty assigns several groups to every subject, every group has a 6xed timetable for
classes. Every group has been previously assigned to rooms or laboratories, and there is a maximum
number of students per classroom or laboratory. 3

(2) The groups are already scheduled to lecturers, i.e. staJng constraints are already satis6ed. 4

(3) Every student is allowed to register in every subject the faculty o?ers (in di?erent courses if
desired), and they are also allowed to choose a preferential group for each subject. Note that for
every subject, the classes have a di?erent timetable depending on the group.

(4) Every student must choose a set of “priority” subjects belonging to the same course, theoretical
or practical (laboratory) subjects, which will be assigned with priority over subjects belonging to
di?erent courses.

(5) Since every group is restricted to a maximum number of students, the assignment of the
desired group to a given student is not always possible, and therefore another group should be
assigned.

A large number of faculties can be modelled by means of the scenario described above. Con-
sidering this model, the objective of every faculty is to assign a feasible and personalized weekly
timetable for the whole course 5 to every student. By personalized timetable we mean: 6rst, that
the timetable should include all the subjects that a given student has chosen as priority subjects,
including as many non-priority subjects as possible, and second, the students should be assigned to
the group they have chosen if possible, or in another feasible group if the 6rst election cannot be
provided. The students must be able to attend all classes, i.e. the students cannot be assigned to

1 We focus our attention on technology schools, due to the application we present in this paper consists in obtaining
the personalized timetables for students of telecommunication engineers school; however, the approach is extensible to
any other type of faculty or school with similar characteristics to those we consider in this paper.

2 Note that this scenario demarcates our problem from traditional timetabling problems.
3 This means that groups has also a maximum number of students allowed. This capacity is di?erent depending on

whether it is a theory group or a laboratory group.
4 In the majority of Spanish faculties and schools this issue is previously solved by the direction of the school together

with lecturers.
5 Note that the timetable assigned consists of the classes a given student has from Monday to Friday, from 8 o’clock

in the morning until 8 o’clock in the evening, during the entire course.
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Fig. 1. (a) Example of a compact timetable. Shadowed zones stands for assigned groups. Ci = 0 in this example. (b)
Example of a non-compact timetable. Ci = 20 in this example.

groups with overlapped timetables. This is a hard constraint that must always be ful6lled. Finally,
we also consider as a goal of the problem that every student’s timetable must be as compact as
possible. The concept of compactness (Ci) is de6ned as the total number of free hours between two
assigned groups in a timetable. Fig. 1(a) and (b) shows an example of a compact timetable and a
non-compact one, respectively. In Appendix A, it is shown how to calculate the compactness of a
given timetable using Fig. 1(a) and (b).

Note that the timetabling problem we face is de6ned as being focused on obtaining the best
commodities for the students, and its objectives and constraints are di?erent from the traditional
timetabling problem.

2.2. Mathematical formulation of the problem

Table 1 de6nes the variables used hereafter in the mathematical formulation of the problem and in
the algorithm description for solving it. The problem formulation is presented below, in Eqs. (1)–(6).
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Table 1
Notation

Variable De6nition

Input
Ns Total number of students
Nb Total number of subjects
Ngj Total number of groups in subject j, j∈ {1; : : : ; Nb}
Gjk Maximum number of students in group k, k ∈ {1; : : : ; Ngj} of subject j, j∈ {1; : : : ; Nb}
Rij Registration matrix. Binary matrix in which a 1 in position (i; j) means that student i, i∈ {1; : : : ; Ns} has

registered in subject j, j∈ {1; : : : ; Nb}
Pij Priority matrix. Binary matrix in which a 1 in position (i; j) means that student i, i∈ {1; : : : ; Ns} has chosen

subject j, j∈ {1; : : : ; Nb} as priority subject. No subjects belonging to di?erent courses can be chosen as
priority subjects

Mij Matrix of non-priority subjects. It is a binary matrix de6ned as Mij = Rij − Pij

Fjkj′k′ Binary matrix of feasibility among groups. Given two groups k and k ′, k ∈ {1 : : : Ngj}, k ′ ∈ {1; : : : ; Ngj′ }
belonging to subjects j, j∈ {1; : : : ; Nb} and j′, j′ ∈ {1; : : : ; Nb}, Fjkj′k′ is 0 if there is not incompatibility
between groups k and k ′, and 1 if there is incompatibility between them

Dijk Binary matrix of preferences in which a 1 in position (i; j) means that student i∈ {1; : : : ; Nb} has chosen
group k, k ∈ {1; : : : ; Ngj} in subject j, j∈ {1 : : : Nb}

Output
Vijk Assignment matrix: for each student i, i∈ {1; : : : ; Ns}, subject j, j∈ {1; : : : ; Nb} and group k, k ∈ {1; : : : ; Ngj},

Vijk is 1 if the group has been assigned, and 0 if not
Ci Vector of timetable compactness. For every student i, i∈ {1; : : : ; Ns}

Ci is a measure of the student’s timetable compactness. This vector is calculated based on the assignment
matrix Vijk (see Appendix A for an example)

The 6rst objective (objective (1)) is to minimize the total number of non-assigned subjects. We also
desire that the obtained timetables be as compact as possible. This is achieved by considering Eq.
(2) as an objective of the problem (objective (2)). Finally, timetables obtained should satisfy the
maximum of students preferences (objective (3)). Problem constraint (4) stands for assigning all
the priority subjects of students, problem constraint (5) ensures the compatibility among groups and
6nally, problem constraint (6) restricts the number of students per group.

(a) Non-priority assignment requirements:

min


 Ns∑

i=1

Nb∑
j=1


Mij


1 −

Ngj∑
k=1

Vijk






 : (1)

(b) Compactness requirements:

min

(
Ns∑
i=1

Ci

)
: (2)
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(c) Group preference requirements:

max


 Ns∑

i=1

Nb∑
j=1

Ngj∑
k=1

VijkDijk


 : (3)

(d) Feasibility constraint I (priority assignment requirement):

Ns∑
i=1

Nb∑
j=1

Ngj∑
k=1

VijkRijPij =
Ns∑
i=1

Nb∑
j=1

RijPij: (4)

(e) Feasibility constraint II (compatibility among groups):

Ns∑
i=1

Nb∑
j=1

Ngj∑
k=1

Nb∑
j′¿j

Ngj′∑
k′¿k

VijkVij′k′Fjkj′k′ = 0: (5)

(f) Feasibility constraint III (maximum number of students per group):

Ns∑
i=1

Vijk6Gjk ∀j; k: (6)

3. Description of the algorithm

This section describes in detail the algorithm developed in this paper. We propose a two-
phase heuristic evolutionary approach, where the two-phase heuristic obtains feasible personal-
ized timetables; and the EA improves the solutions in terms of compactness of timetables and
low-priority subjects assignment. The two-phase heuristic algorithm is described in Section 3.1,
whereas the characteristics of the EA used are described in Section 3.2. Note that the structure
of our algorithm (a priority list evolved with an evolutionary algorithm together with a schedul-
ing engine (the two-phase heuristic in our case)) is well known in scheduling problems, see for
example the work by Fang et al. [26] for the open-shop scheduling problem, a problem quite
close to timetabling, and the work by Lai et al. [27] for the frequency assignment
problem.

3.1. The two-phase heuristic search

The two-phase heuristic used in this approach involves two searching procedures (two-phases)
each one guaranteeing the ful6lment of a di?erent set of constraints.

3.1.1. Priority subjects assignment
The 6rst task must be to assign groups in a feasible way for the subjects that students have chosen

as being priorities. In order to do this, we start from an ordering �(i), i = 1; : : : ; Ns of students. The
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assigning matrix Vijk is set to 0 for all students (no assignment); then for every student �(i), the
6rst attempt is assigning priority subjects to the groups he/she has chosen, i.e. V�(i) jk =1 if P�(i) j =1
and D�(i) jk = 1, where j is the subject the student �(i) is going to follow and k is the group he
has chosen for that particular subject. The assignment will be feasible only if Fjkj′k′ = 0 whether
V�(i) jk = 1 and V�(i) j′k′ = 1 (problem constraint (e)), and also none of the selected groups is full
over, i.e.

∑Ns
i=1 Vijk6Gjk (problem constraint (f)). If Fjkj′k′ = 1 or

∑Ns
i=1 Vijk ¿Gjk , all the groups

assigned to the student �(i) are removed and reassigned into uncompleted groups in such a way
that Fjkj′k′ = 0. This reassignment follows a sequential algorithm, checking 6rst the groups with
more similar timetables to the one chosen. However, note that in this last case the student will
be forced to study in groups they did not choose, thus, these assignments do not contribute to the
increase in the preferences requirement term (Eq. (3)). Note also that the three hard constraint of
feasibility between priority subjects (constraints (d)–(f)) are ful6lled, due to Fjkj′k′ = 0 if Vijk = 1
and Vij′k′ = 1 and

∑Ns
i=1 Vijk6Gjk . Finally, recall that only subjects belonging to the same course

can be selected as priority subjects, so it will always be possible to achieve an assignment Vijk

which ful6ls problem constraint (d). Summing up, the 6rst heuristic proposed can be described in
pseudo-code as:

Pseudo-code of the 9rst heuristic

for every student �(i):
for every subject j:

if(P�(i) j = 1 and D�(i) jk = 1)
Assign priority groups(�(i); j; k);

end(if)
end(subject j)

if(group full over or infeasible assignment)
Reassign priority groups(�(i));

end(if)
end(student �(i))

3.1.2. Non-priority subjects assignment
Once the priority assignment has been performed, a second heuristic manages the non-priority

subjects assignment, in the following way: the non-priority subjects ful6l the condition Mij = 1.
For these subjects, we again start from the ordering �(i) of students. We 6rstly attempt to as-
sign the subject to the desired group k such as Dijk = 1. We check that the group is not full
and that the assignments are feasible for a given student. The conditions to be ful6lled are again
Fjkj′k′ = 0 whether V�(i) jk = 1 and V�(i) j′k′ = 1 (problem constraint (e)), and

∑Ns
i=1 Vijk6Gjk (prob-

lem constraint (f)). If there is not a feasible group or if all the groups are already full, then
we try to assign the subject to another feasible group, again starting from groups with timetable
more similar to the one desired. In the case that no feasible option can be found, or all fea-
sible groups are full, the subject is not assigned. The second heuristics in pseudo-code is the
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following:

Pseudo-code of the second heuristic

for every student �(i):
for every subject j:

if(M�(i) j = 1 and D�(i) jk = 1)
Assign non-priority groups(�(i); j; k);

end(if)
if(group full over or infeasible assignment)
Reassign subject(�(i); j);

end(if)
end(subject j)

end(student �(i))

3.1.3. Analysis of the two-phase heuristic
The heuristic presented in this paper for timetabling has two di?erent parts (two-

phases); the heuristic for the priority subjects and the heuristic for the non-priority subjects. Fo-
cusing on the 6rst heuristic, and due to its structure, the 6rst students to be managed will
achieve the desired groups for priority subjects, whereas the last students will probably have to
study some subjects in non-desired groups. In addition, once the 6rst heuristic has assigned all
the priority subjects, the number of vacant places in groups will have decreased, and the num-
ber of unassigned subjects will depend completely on the initial ordering �(i) of
students.

Another important point to be noted is that the two-phase heuristic search will produce good
timetables, i.e. timetables in which the problem’s hard constraints are ful6lled. However, these so-
lutions can be improved by means of an evolutionary algorithm, which produces very high-quality
solutions in terms of soft constraints ful6lment.

3.2. The evolutionary algorithm

The concept of evolutionary algorithm (EA) is based on natural evolution. In nature, the indi-
viduals constituting a population adapt to the environment in which they live. The 6ttest individuals
have the highest probability of survival and tend to increase in number, while the less 6t individuals
tend to die out. This survival of the 6ttest principle is the idea behind EAs [28].

EAs maintain a population of individuals, each of which represents a speci6c solution to the
given optimization problem. Starting from a random generated population, a process of evolution
is simulated. The main components of this process are the operators of selection, crossover and
mutation, which emulate the random changes occurring in nature. They will be explained in detail
in this section. After a number of generations, highly 6t individuals will emerge corresponding to
good solutions to the given optimization problem.

In this paper we use an EA for improving the solutions found by the two-phase heuristic procedure.
Every individual of the EA is a string of numbers which encodes a permutation �(i), i = 1; : : : ; Ns,
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representing the ordering of students which will be used by the two-phase heuristic algorithm. The
population of the EA is formed by � individuals (strings) in which the genetic operators, selection,
crossover and mutation, are applied. A 6tness value is associated to every individual in the population.
We de6ne this 6tness as a measure of the problem’s requirements. The population is then evolved
by means of the application of genetic operators to it. The pseudo-code of the proposed EA is the
following:

Pseudo-code of EA

Init Population(�(i))
�tness calculation
While (Ngenerations 6 100)
Selection
Crossover (PMX)
Mutation
�tness calculation
get better individual
Ngenerations++;

end(while)

where N stands for the number of generations (we stop the algorithm after 100 generations),
and the best individual of the current population is always passed to the next generation (elitism
operator).

3.2.1. Selection operator
The selection operator is responsible for choosing which individuals will survive for the next

generation of the EA. Among the di?erent types of selection procedures existing [29], we have
chosen the one known as roulette wheel, in which the probability of an individual to be selected
for the next generation (P(i)) depends on its current 6tness value:

P(i) =
fi

fT
; (7)

where fi is the 6tness value associated with individual i and fT is the total 6tness of the population,
which is de6ned as fT =

∑�
i=1 fi.

Thus, it is probable that the 6ttest individuals receive a larger number of samples in the next
generation than individuals with less associated 6tness values.

3.2.2. Crossover operator
The crossover operator has been described as the key to the EA’s power [28,30], as it promotes

structured yet randomized information exchange between individuals. However, if the crossover oper-
ator is applied to every individual in the population, there will be a discontinuity from
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the previous to the present populations, as none of the individuals of the population from the
previous generation will be retained in the new one. In order to avoid this, a crossover proba-
bility �x is de6ned. It has been suggested that �x ¡ 1, and the range of values used usually lies
between �x = 0:5–0.6 [31]. The pseudo-code of the Crossover operator used in this paper is as
follows:

Pseudo-code of Crossover operator

Couple all individuals, at random.
for(each couple)

if(random variable(0,1) 6 0:6)
Perform Crossover(PMX);

end(if)
end(for)

The application of traditional crossover to a population of permutations, as in our case, would
produce infeasible individuals, that would not represent a permutation after the crossover opera-
tion. One technique that has been used extensively to avoid similar problems, is to use a more
sophisticated crossover operator, known as partially matched crossover (PMX) [27]. In PMX, once
the individuals have been coupled at random, two points in a string are randomly chosen, and
the portions of individuals are exchanged. In addition, if PMX encounters a conIict, i.e. a du-
plicate number in an individual, it will resolve this conIict by swapping the corresponding value
between the individuals. Fig. 2 shows an example of how the PMX operator works: After the
crossover of the selected parts, there is a conIict in parent 1 (duplicate numbers) in the 6rst lo-
cation (a 3), second location (a 2) and sixth location (a 6). In parent 2 there is a conIict in
the second position (a 5), sixth position (a 1) and seventh position (a 4). Then, every position
in which there is a conIict, is substituted by the corresponding swapped value. For example, in
parent 1, the 6rst location (a 3) is substituted by the value which was swapped with the 3, in
this case a 4. In second position, conIict value (a 2) is substituted by a 1 and in sixth po-
sition, the 6 is substituted by a 5. In parent 2, in the second position the 5 is substituted by
a 6, in sixth position the 1 is substituted by a 2 and in seventh position the 4 is substituted
by a 3.

Fig. 2. Partially matched crossover (PMX) example.
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Pseudo-code of PMX operator

Given two parents for crossover:
Select two swapping points randomly.
Swap the part of the parents between the swapping points.

for(the two parents)
for(all positions but the swapped)

if(any repeated values)
Substitute value for the corresponding swapped value;
end(if)

end(for)
end(for)

3.2.3. Mutation operator
After the crossover operation described above, every single individual in the population may

undergo a further random change with a small probability �m. This change consists of choosing two
points in the string of numbers representing an individual and swapping the values in them. Note
that this operation does not produce infeasible individuals.

3.2.4. Fitness calculation
The 6tness function of our EA includes three terms, each representing a problem’s requirement.

Note that the 6rst two requirements (a) and (b) involve the minimization of an expression, whereas
the EA searches for the maximum of the 6tness function. Thus, we de6ne it as

F =


K −

Ns∑
i=1

Nb∑
j=1

aj


Mij


1 −

Ngj∑
k=1

Vijk




− b

Ns∑
i=1

Ci


+ c

Ns∑
i=1

Nb∑
j=1

Ngj∑
k=1

VijkDijk ; (8)

where K is an upper bound of
 Ns∑

i=1

Nb∑
j=1

aj


Mij


1 −

Ngj∑
k=1

Vijk




+ b

Ns∑
i=1

Ci




aj and b are penalty terms for not assigning a subject and for lack of compactness of the timetables,
respectively, and c is a premium for assigning a given subject to the student’s desired group.

4. Experiments and results

In this paper we face a real problem: the assignment of personalized timetables in a school of
telecommunications engineers. Speci6cally, the presented algorithm was used to assign personalized
timetables to 1301 students of the School of Telecommunications Engineers, Universidade de Vigo
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Fig. 3. Evolution of the 6tness function (population mean and best individual).

(Galicia, Spain), in October 2002. In this school, students can choose among 108 subjects, includ-
ing theoretical subjects and practical subjects (laboratories). The teaching organization follows the
model described in Section 2, and our algorithm is directly applicable, without any changes. In the
registration form, students choose the number of subjects they wish to follow, and the ones that are
priority subjects, belonging to the same course.

With the data collected in the registration process, we construct all the matrices and parameters
needed for running the algorithm, i.e. matrices Rij, Pij, Mij, Dijk , Fjj′kk′ , Gjk , and parameters Ns, Nb

and Ngj . We found that the best election of penalty terms for not assigning a non-priority subject (aj)
depend on the subject. 6 The best results were obtained with aj in a range between 1000 and 1300,
the penalty for lack of compactness b = 15 and the premium for assigning a subject to a preferred
group c=20. These values are used in the calculation of the 6tness associated to every individual in
the EA (see Eq. (8)). The EA’s parameters in all simulations were 6xed to �x = 0:6 and �m = 0:01,
with a population of 50 individuals. We programmed our algorithm in C++, using PostgreSQL
as database. We use a SUN SPARK 2=480 MHz for running the simulations. The approximated
computation time in that simulation platform was about 3 h.

The total number of subjects requested by the students in the registration process (
∑Ns

i=1

∑Nb
j=1 Rij)

was 13,305, including theoretical and practical (laboratory) subjects. We ran the algorithm with the
parameters referred above; it was able to assign 13,175, 12,102 of which were allocated in the
desired groups, and the rest in other groups. This means that our algorithm assigns over 99% of the
total requested subjects, and over 90% of them in the desired groups. Fig. 3 shows the evolution
of the 6tness (population mean and best individual) against the generations. Note that the algorithm
converge to the best solution found in about 50 generations. Fig. 4 depicts the evolution of the lack
of compactness, (mean population and best individual) of timetables achieved. Note that due to the
penalty for not assigning a subject is much larger than the penalty due to lack of compactness, better

6 For example, we penalized more failing to assign a laboratory subject than a theoretical subject.
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Fig. 4. Evolution of the total compactness of timetables obtained (population mean and best individual).

Table 2
Comparison of the results obtained by di?erent ordering algorithms

Algorithm Total non-priority Subjects assigned Total timetables
assigned subjects in the desired groups compactness

EA 13,175 12,102 8558
Greedy 13,151 12,047 8610
Random 13,096 11,915 8670

solutions in terms of number of assignments may have worse properties of compactness. However,
as can be seen in Fig. 4, our approach is able to control it.

In order to check what the e?ect is of using an EA as global search algorithm, we have compared
the results obtained using it against the results found with a greedy algorithm for ordering the
students, and also against the results obtained with a random ordering. 7

The greedy algorithm consists of assigning 6rst the students with a larger number of subjects. We
have run 100 times the algorithm with a random ordering, keeping the best solution found. Table 2
shows a comparison of the solutions found by the di?erent ordering algorithms. It is easy to see
that the best solution is found by the EA, in terms of non-priority subjects assigned and subjects
assigned to preferred groups. The compactness of the timetables is also better in the solution found
by the EA than that obtained by the other two algorithms.

7 Recall that the performance of the algorithm depends on the initial ordering (�(i)) of the students, as was pointed
out in Section 3.1.3. Note also that the local search heuristics are the same for the three algorithms, what ensures that
the problem’s constraints will be ful6lled.
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5. Conclusions

In this paper we have presented, as a case study, the application of a two-phase heuristic evo-
lutionary algorithm to obtain personalizing timetables in some courses of a Spanish university. We
tackle the problem of assigning a feasible and personalized timetable to every student in a faculty or
school. Thus, students are allowed to choose a set of priority subjects which will be always assigned,
and also a preferred group for following a given subject. Other objectives such as compactness of
timetables constructed and non-priority subjects assignment have also been considered.

The algorithm used is formed by a two-phase heuristic for solving the problem constraints and
an evolutionary algorithm for improving the quality of the solutions found. We have applied it to
a real problem, consisting of assigning personalized timetables to 1301 students of the School of
Telecommunications Engineers, Universidade de Vigo (Galicia, Spain), in October 2002. We have
obtained very good results in terms of non-priority subjects assignment (over 99%), compactness
of timetables and assignments of preferred groups to students. Thus, this paper is a good example
of the application of emergent techniques such as evolutionary algorithms and heuristic search to
real-life problems.
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Appendix A.

A.1. Calculation of the compactness of a timetable

We use the following expression in order to calculate the compactness of the timetable of a given
student i:

Ci =
5∑

d=1

12∑
h=1

Wdh(FR)dh; (9)

where index d stands for the day of the week, index h stands for the hour of the day, Wdh = 1
if h is between the 6rst and last hour when the student has a class (0 otherwise), and (FR)dh =
1 is h corresponds to a free hour and 0 otherwise. Note that we consider 5 days of the week
(from Monday to Friday) and 12 h a day, from 8 o’clock in the morning to 8 o’clock in the
evening.
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As an example, consider the timetables depicted in Fig. 1. Let us calculate the Compactness C
for the timetable (a): Wdh would be 1 for every day of the week, if index h takes values from 1
to 4. However, (FR)dh is always 0, since there are no free hours in this timetable. This way C = 0
for time timetable (a). Things are di?erent if we consider timetable (b): In this case, Wdh is 1 for
every day of the week if index h has the values from 1 to 8. In this speci6c example, (FR)dh = 1
every day of the week if h = 2, 3, 5 and 6, i.e. 4 h a day for 5 days, C = 20.
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