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Abstract

This paper presents an extension of the terminal assignment problem (TA) in the case that groups of terminals must be assigned

together. We analyze this situation by means of an equivalent problem: the wedding banquet problem (WBP). We provide a description

of the problem and its mathematical definition. We also describe an application of the WBP to mobile communications network design.

Two hybrid metaheuristics algorithms for the WBP are presented in the paper. We test their performance in several computational

experiments, including synthetic instances of the WBP, and a mobile network design application.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

An important class of combinatorial optimization
problems with constraints (Smith et al., 1996; Smith,
1999) can be defined as the maximization or minimization
of a goal function (usually in a binary search space) subject
to a set of constraints, which have to be satisfied for a
solution to be feasible. Some of these problems arise
frequently in computational engineering and computer
science fields, such as scheduling problems (Wang and
Ansari, 1997; Salcedo-Sanz et al., 2003), assignment
problems (Menon and Gupta, 2004) or problems of
systems design (Soni et al., 2004). One of these combina-
torial optimization problems with a wide range of
applications is the so-called terminal assignment problem

(TA hereafter), which in the last few years has been tackled
using several different heuristics approaches, (Abuali et al.,
e front matter r 2005 Elsevier Ltd. All rights reserved.
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1994; Khuri and Chiu, 1997; Salcedo-Sanz and Yao, 2004;
Yao et al., 2004).
In this paper, we investigate an extension to the TA,

which includes groups of terminals that must be assigned
together to the same concentrator. This could have
interesting applications in mobile telecommunications net-
works design (Kershenbaum, 1993; Chu et al., 2000; Soni
et al., 2004), where grouping of several network elements
(base transceivers stations (BTSs) for example) must be
grouped to improve the reliability of the network and to
reduce the investment costs. To carry on an analysis of the
extension from TA to TA with groups of terminals, we
propose an equivalent problem, that we call the wedding

banquet problem (WBP).
It is amazing that even in a social event like a wedding,

the couple who is going to get married often have to solve a
combinatorial optimization problem. In fact, they have to
solve a kind of TA with groups of guests serving as
terminals, and tables serving as concentrators: In the
majority of weddings, there is a banquet after the
ceremony, in which family and friends of the bride and
the groom celebrate together the great event. The problem
arises when the couple has to decide the guests who must
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Fig. 1. Expansion step from a matrix N �M to a matrix L�M previous

to the calculation of the objective function.
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share table in the banquet. Of course, there is a maximum
number of guests in each table (the capacity constraint of
the TA), and there are groups of guest that must be seated
together (families or very close friends). The objective
function of the WBP is to maximize the happiness in the
banquet, assigning together as many people who get on
well as possible.

In this paper, we provide an analysis of the WBP. This
includes to describe the model that we consider and relate it
with the TA with groups of terminals (Brudaru, 2003;
Brown and Sumichrast, 2005). Also, we show its applica-
tions to mobile network design problems. Finally, we
present two hybrid metaheuristic approaches to solve the
WBP, since traditional optimization approaches are not
applicable to this kind of combinatorial optimization
problems. Our approaches are based on a combination of
global–local heuristics. A fast binary Hopfield neural
network (HNN) is used as local search approach to solve
the WBP constraints. A genetic algorithm (GA) or a
simulated annealing (SA) algorithm are hybridized with the
HNN as global search approaches, to improve the quality
of the solutions found by the HNN. We evaluate the
performance of these approaches in several computational
WBP instances, and in a communications network design
application.

The structure of the rest of the paper is the following: in
Section 2, we provide the WBP model we use, and based on
it, we present the definition of the problem. It includes a
subsection in which we provide an analysis of the WBP,
showing its possible application to the design of mobile
telecommunication networks. We present the algorithms
for solving the WBP in Section 3, they are two hybrid
approaches, which include a Hopfield network as local
search algorithm for solving the problem’s constraints, and
a genetic algorithm or a simulated annealing as global
search heuristics. In Section 4, we show the performance of
these approaches. Section 5 concludes the paper giving
some final remarks.

2. The WBP: model and definition

We consider the following model for the WBP: Let G be
the set of guests to the banquet, formed by L guests, and T

the set of M tables available. Each table i; i ¼ 1; . . . ;M has
a maximum capacity of Zi people. Note that you cannot
assign more than Zi guests to table i. Let H be an L� L

matrix of relationship between guests, such that the element
hij is a measure of how is the relationship between guests i

and j. If these two guests have a good relationship hij will
have a high value, but if the guests do not get on well, the
value of hij will be low. In addition, let A be an M � L

binary matrix of assignment, where every element aij ¼ 1
stands for the guest j has been assigned to table i, whereas
aij ¼ 0 means no assignment. Let us consider now a
partition of the set G of guests into N groups of people Rk,
k ¼ 1; . . . ;N, and let PRk

be the number of guests in group
Rk. Let Â be an M �N binary matrix of assignment, where
the element âij ¼ 1 means that group j has been assigned to
table i. It is easy to see that the following constraint must
be satisfied:

XN

k¼1

PRk
¼ L, (1)

note also that if we know the amount of people in each
group (PRk

), we can generate matrix A from matrix Â. See
Fig. 1 as an example of this expansion step.
The WBP can be mathematically defined as find an

assignment matrix Â, such that the associate matrix
A fulfills

max
XM
i¼1

XL

j¼1

XL

k¼1

aijaikhjk

 !
(2)

subject to:

XN

j¼1

âijPRj
pZi 8i. (3)

In the general case, the WBP considers that always is
possible the assignment of groups to tables, without
splitting the groups. Note that there are situations in
which this is not possible, and the only possibility for
assigning the groups to tables is splitting them into smaller
groups. In practice, this situation is not very common, so in
this paper we focus in the general case.

2.1. WBP in mobile network design

One of the most important considerations regarding the
WBP, is that it can be seen as a generalization of the TA,
(Abuali et al., 1994; Khuri and Chiu, 1997), where some of
the terminals are assigned together. This implies a
reduction of the problem encoding, from a matrix of
encoding A to a matrix of encoding Â. Thus, the search
operators of any metaheuristic approach for solving the
WBP will be applied in the search space of matrices Â,
much smaller than the size of the space of matrices A. This
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Fig. 2. Example of the Hopfield neural network implementation for the

example in Section 3.1.1.
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approach is applicable in several fields of engineering. For
example, there is a direct application of the WBP in the
design of the access part of a mobile communications
network (Fig. 2).

Consider a mobile communications network formed by a
set of BTSs, which provide mobile telecommunications
services over an specific given area. Some of these BTSs can
serve as multiplexers, concentrating the traffic handled by a
group of BTSs, and forming a second level in the physical
layout of the network. The highest level in the access part
of a mobile network is formed by the so-called base
stations controllers (BSCs), which perform the radio
resource management, and take part in the mobility
management and call control of the network. It can be
considered as the first smart element in the network
(Pomerleau et al., 2003; ETSI, 1996). Fig. 3 shows an
example of a mobile communications network containing
BTSs, multiplexers and BSCs.

The physical network architecture we have explained
above, using multiplexers equipment, are specially useful in
rural areas, where users in the BTSs generate low traffic
levels, so it is not worth to establish direct links between the
BTSs and the BSCs. Furthermore, in these rural areas, the
distance between BTSs and BSCs are relatively large, which
affects the reliability of the radio links. Thus, the problem
we face consists of, given a group of BTSs1 (grouped by the
nearest multiplexer), and a set of BSCs, assigning the
groups of BTSs to BSCs in such a way that a constraint of
capacity to be fulfilled, and a given objective function to be
maximized or minimized. It is easy to see that this
corresponds to a WBP, where the guests are the BTSs,
the groups of guests are groups of BTSs associated to a
multiplexer, and the tables are the BSCs. The definition of
a given BTS as a multiplexer can be done using the matrix
H of relationship between guests, defined as k=dij, where k

is a positive constant, and dij stands for the Euclidean
1Note that a group can be formed by one or more BTSs.
distance between BTSs i and j. This matrix could be used as
well for defining an objective function for the problem.

3. Proposed approach to the WBP: two hybrid

metaheuristics

In this Section, we describe the meta-heuristic ap-
proaches for the WBP that we propose in this paper.
Basically, we compare the performance of two hybrid
metaheuristics, a Hopfield network-genetic algorithm
approach (WBP-HNN_GA), and a Hopfield network-
simulated annealing algorithm (WBP-HNN_SA). We
describe the hybrid approaches, presenting the HNN used
and the global search heuristics.

3.1. The Hopfield neural network

The Hopfield network we use as a local search algorithm
for solving the WBP constraints is a binary Hopfield
network (Shrivastava et al., 1992), where the neurons can
only take values 0 or 1. The dynamics of this network
depends on a matrix C which defines the minimum distance
between two is in the network for each row, and on the
initial state of the neurons. See (Shrivastava et al., 1992;
Salcedo-Sanz and Bousoño-Calzón, 2005) for further
details. The structure of the HNN can be described as a
graph, where the set of vertices are the neurons, and the set
of edges define the connections between the neurons. We
map a neuron to every element in the solution matrix Â. In
order to simplify the notation, we shall also use matrix Â to
denote the neurons in the network. The HNN dynamics
can then be described in the following way: After a random
initialization of every neuron with binary values, the HNN
operates in a serial mode. This means that only one neuron
is updated at a time, while the rest remain unchanged.
Denoting by âijðtÞ the state of a neuron at time t, and
letting pðiÞ be a random permutation of i ¼ 1; 2; . . . ;N, the
updating rule of the HNN is defined as follows:

âpðiÞjðtÞ ¼ isgn
XN

p¼1
papðiÞ

XminðM ;jþcpðiÞ;pÞ

q¼maxð1;j�cpðiÞ;pþ1Þ
qaj

âpq

0
BB@

1
CCA, (4)

where the isgn operator is defined by

isgnðnÞ ¼
0 if n40 or

PN
j¼1 âijPRj

XZi 8i;

1 otherwise:

(
(5)

This updating rule only takes into account neurons âpq with
value 1 within a distance of cip. The matrix C is an N �N

matrix which encodes the problem’s constraints, and it is
defined as follows:

cij ¼
M if i ¼ j;

0 otherwise:

�
(6)

Each element cij stands for the minimum separation
between 1s in matrix Â. Thus, the matrix C we have
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Fig. 3. Example of a mobile communications network containing BTSs, multiplexers and BSCs.
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defined in Eq. (6) forces one and only one 1 per
row (the minimum possible separation between two
1s in the same row is M), but there may be several 1s in
the same column (0 separation if the 1s are in different
rows of Â).

A cycle is defined as the set of N �M successive neuron
updates in a given order. In a cycle, every neuron is
updated once following the given order pðiÞ, which is fixed
during the execution of the algorithm. After every cycle,
the convergence of the HNN is checked. The HNN is
considered converged if none of the neurons have changed
their state during the cycle. The final state of the HNN
dynamics is a potential solution for the WBP, which fulfils
the problem’s constraints given in Section 2. Note,
however, that the solution found may be unfeasible if
any of the groups is not assigned to a table.
Fig. 4. Example of matrix H for the Problem #1.
3.1.1. Implementation example

In this section we provide an example of how the binary
Hopfield neural network used in this paper works.
Consider a small WBP example formed by 20 guests,
grouped in 6 groups, and 3 tables. The groups of guests for
this example are defined to be PRi ¼ f2; 3; 2; 4; 5; 4g (note
that the sum of the groups is 20, the total number of
guests), whereas the matrix H of happiness for this problem
is showed in Fig. 4. Following Eq. (6), the constraints
matrix C associated to this problems is

C ¼

3 0 0 0 0 0

0 3 0 0 0 0

0 0 3 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3

0
BBBBBBBB@

1
CCCCCCCCA
.
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As was stated before, this matrix C does not allow more
than one 1 in each row (each group must be assigned only
to one table), but there may be any number of 1s in each
column (several groups may be assigned to the same table) .

We are interested now in showing the process of reaching
a feasible solution starting from an unfeasible one. Fig. 2
shows this process. The figure shows each state of the HNN
(matrix Â), the shadowed squares in represent 1s in the
WBP-HNN_GA algorithm

Initialize GA population at random
while(max. number of generations has not been reached) do

for(every individual Â)

Run the HNN to obtain a feasible Â.

Calculate the fitness value of the individual f ðÂÞ using (2).

if Â is not feasible, apply a penalty to f ðÂÞ.

Substitute the GA individual by the new Â obtained through the HNN.
endfor

selection

crossover

mutation

end(while)
HNN. We suppose that the initial unfeasible solution has
been generated at random. In order to apply Eq. (4) to the
initial state in the figure, we need to select an updating
ordering in rows and columns. We choose p, which defines
the order of updating, to be p ¼ f4; 3; 5; 2; 1; 6g. For coming
up with each HNN state, we apply Eq. (4) and the isgn
operator to the previous state, until a feasible solution is
obtained.

It is easy to check that in this case it takes only two cycles
to converge to the final solution from the initial one. Note
that, once the initial state of the network and the order of
updating (p) are fixed, the final state is defined. Different
initial states or updating orderings will produce different
final solutions. It is also important to note that this
Hopfield neural network does not take the objective
function into account, but only the problem’s constraints,
defined by matrix C and isgn operator, in this case.

3.2. The hybrid approach WBP-HNN_GA

The first hybrid metaheuristic we consider for the
WBP is formed by the Hopfield neural network described
above, and a standard GA for improving the quality of its
solutions. Our GA encodes a population of U potential
solutions for the WBP, as binary strings of length N �M.
Each string represents a different assignment matrix Â

which is passed through the Hopfield network in order
to get a feasible assignment of groups to tables. The
population is evolved through successive generations by
means of the application of the standard genetic operators
selection, crossover and mutation described in Goldberg
(1989). In addition, we implement an elitist strategy,
which consists of passing the individual with the highest
fitness to the next generation. This way, our algorithm
always preserve the best solution found in the evolution.
The complete algorithm for the WBP, formed by the GA
and the HNN described in Section 3.1, is summarized
below:
3.3. The hybrid approach WBP-HNN_SA

SA has been widely applied to solve combinatorial
optimization problems (Kirpatrick et al., 1983; Kirpatrick,
1984; González et al., 2002). It is inspired by the physical
process of heating a substance and then cooling it very
slowly, until a strong crystalline structure is obtained. This
process is simulated by lowering an initial temperature by
slow stages until the system reaches to an equilibrium
point, and no more changes occur. Each stage of the
process consists of changing the configuration a given
number of times, until a thermal equilibrium is reached,
and then a new stage starts, with a lower temperature. The
solution of the problem is the configuration obtained in the
last stage. In the standard SA, the changes in the
configuration are performed in the following way: A new
configuration is built by a random mutation of the current
one. If the new configuration is better, then it replaces the
current one, and if not, it may replace the current one
probabilistically. This probability of replacement is high in
the first stages of the algorithm, and decreases in every
stage.
In this paper we consider the hybridization of a SA

and the Hopfield neural network presented in Section 3.1
for solving the WBP. The idea behind this is that
configurations involved in the SA are feasible solutions
for the WBP. The SA will then search for the best
feasible solution with respect to a given cost function,
in this case a non-standard cost function for the WBP given
in (2).
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Table 1

Main characteristics of the instances tackled

Problem # Guests Groups Tables Tables’ capacity
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The complete algorithm for the WBP, formed by the SA
and the HNN described in Section 3.1, performs in the
following way:
1 20 6 3 8

2 40 15 5 10

3 60 20 8 8

4 80 25 10 9
WBP-HNN_SA algorithm:

k ¼ 0;
T ¼ T0;
Initialize a potential solution at random;
5 100 30 15 7
6 150 45 20 8

Run the HNN to obtain Â;

evaluateðÂ; f ðÂÞÞ;
if Â is not feasible, apply a penalty to f ðÂÞ.

repeat
for j ¼ 0 to x

Âmut ¼ mutateðÂÞ;
Run the HNN to obtain Â;
evaluateðÂmut; f ðÂÞÞ;
if Â is not feasible, apply a penalty to f ðÂÞ.
if((f ðÂmutÞof ðÂ)) OR (randomð0; 1Þoeð�a=TÞÞÞ then
Â ¼ Âmut;

endif
endfor

T ¼ f T ðT0; kÞ;
k ¼ k þ 1;
until(ToTmin);

where k stands for the number of iterations performed; T

keeps the current temperature; T0 is the initial temperature;
Tmin is the minimum temperature to be reached; Â stands
for the current configuration and Âmut for the new
configuration after the mutation operator is applied; f

represents the cost function considered (see formula (2)); x
is the number of mutations performed for a given
temperature T ; f T is the freezer function; and a is a
constant. Parameter a and the initial temperature T0 are
chosen to have an initial acceptance probability about 0:8,
a value usually used. The freezer function is defined as

f T ¼
T0

1þ k
. (7)

Finally, the minimum temperature Tmin is calculated on the
basis of the desired number of iterations (numIt) as

Tmin ¼ f T ðT0;numItÞ. (8)

4. Computational experiments

4.1. Synthetic WBP test instances

In order to test the performance of our approaches, we
tackle a set of synthetic WBP instances of different sizes.
Table 1 shows the main characteristics of the problems
solved. There are six problems, of increasing difficulty. The
matrices of relationship between guests, H, were randomly
generated, assigning a value of 100 to the component hij if
the guests i and j belong to the same group, and a random
value between 0 and 99, extracted from a uniform
probability distribution, to the rest of the components hij .
The groups were also randomly generated, in such a way
that the constraint 1 is fulfilled. Fig. 4 shows an example of
an H matrix, for test Problem #1.
We have run the two meta-heuristic algorithms proposed

using the following parameters: the GA was run with a
population of U ¼ 50 individuals, evolving during 300
generations. We use two-point crossover, with a prob-
ability Pc ¼ 0:6, a standard random flip mutation, with
probability of mutate and individual equal to Pm ¼ 0:01
and roulette wheel selection, see Goldberg (1989) for
details on standard GA parameters. The main parameters
of the SA are x ¼ 50 and numIt ¼ 300, with standard
random flip mutation for obtaining new configurations.
Note that the number of function evaluations is the same
for our two metaheuristics approaches (15 000). In order to
compare the results obtained by our approaches with an
existing algorithm, we have implemented the GA described
in Khuri and Chiu (1997) for the TA. It is a GA with
integer encoding and penalty function to manage the
unfeasible solutions (see Khuri and Chiu (1997) for
details). The parameters of this GA are the same
parameters than the GA of our hybrid heuristic. We run
each algorithm 30 times, keeping the best, mean and
standard deviation results obtained.
4.2. Results on synthetic instances

Table 2 shows the results obtained on the problems
considered. It shows the best, average and standard
deviation values of the 30 experiments run in every
problem. Our proposed hybrid approaches are able to
solve the problem, obtaining good quality solutions. The
data in this table shows that the hybrid approach WBP-
HNN_SA outperforms the hybrid WBP-HNN_GA in the
majority of the instances. It is easy to see that
both heuristics outperform the GA with penalty function.
Table 3 shows the results of a t-test performed over the
data obtained by the three compared algorithms. This table
shows that the differences been our hybrid algorithms are
statistically significant in Problems #4–6, whereas in
instances #2 and #3 none of the approaches perform
statistically better than the other. Both algorithms obtain
the optimal assignment in the easiest instance #1. This
table also shows that both hybrid heuristics perform
statistically better than the GA with penalty function, in
all instances but in the easiest one, instance #1, where all
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Table 3

t values obtained by a two-tailed t-test for Problems #1 to #6

Problem # GA-(WBP-

HNN_GA)

GA-(WBP-

HNN_SA)

(WBP-HNN_GA)-

(WBP-HNN_SA)

1 0.0 0.0 0.0

2 �4.32a �4.28a 0.02

3 �7.40a �6.90a 1.58

4 �9.17a �11.31a �4.65a

5 �4.51a �12.40a �9.84a

6 �7.82a �8.66a �2.45a

astands for values of t with 29 degrees of freedom which are significant

at a ¼ 0:05.

Table 4

Comparison of the results obtained by the hybrid algorithms considered

when no grouping in the encoding of the metaheuristics is considered

Problem # WBP-HNN_GA WBP-HNN_SA

(Best/Avg.) (Best/Avg.)

1 9342/8974.2 9342/8854.1

2 22 140/21 576.3 21 859/20 998.3

3 27 418/26 382.0 26 754/25 754.9

4 41 325/40 208.3 40 953/39 525.3

5 42 117/41 198.3 42 342/41 339.8

6 70 654/69 018.1 71 101/69 823.4

Table 5

Comparison of the results obtained by the HNN without hybridization

with any global search heuristic

Problem # HNN (Best/Avg.)

1 9342/8516

2 23 750/19 032.1

3 28 872/26 930.0

4 44 080/39 800.9

5 45 082/42 903.5

6 74 784/69 961.6
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Fig. 5. Differences in size encoding using and not using groups of guests

for the WBP test instances considered.

Table 2

Comparison of the results obtained by the different algorithms considered

Problem # GA WBP-HNN_GA WBP-HNN_SA

(Best/Avg./Std Dev.) (Best/Avg./Std Dev.) (Best/Avg./Std Dev.)

1 9342/9342.0/0.0 9342/9342.0/0.0 9342/9342.0/0.0

2 23 432/22 328.3/680.1 24 056/23 207.1/349.7 23 838/23 205.1/183.2

3 28 345/27 302.3/725.8 30 118/29 562.0/272.4 29 760/29 466.4/328.7

4 44 322/43 600.2/816.4 45 314/44 268.4/466.1 45 488/44 973/613.3

5 44 913/44 298.2/746.3 45 902/45 080.2/518.6 46 592/46 178.4/222.9

6 73 100/72 493.8/694.1 76 920/75 454.1/914.6 77 030/75 886.7/628.5
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the heuristics tested obtained the optimal solution in all the
runs.

Table 4 shows the performance of our hybrid metaheur-
istics in the test problems #1–6 when no grouping is
considered in the definition of the WBP (or, equivalently, L

groups of size 1 are considered). In this case, both
metahyheuristics encodings are larger than in the previous
experiments. Note that the performances of WBP-
HNN_GA and WBP-HNN_SA algorithms with this
encoding are worse than using a encoding based on groups
of guests. It is specially dramatic in the hardest Problems
#4–6, where the differences in performance considering or
not groups of guests are huge. This fact can be explained
considering Fig. 5. It shows the differences in size of the
metaheuristics encodings with and without groups of
guests. As an example, Problem #4 can be encoded with
250 bits using groups (N �M), whereas 800 bits (L�M)
are needed if no group of guests is considered. It is easy to
see that these differences in size encoding affects to the
metaheuristics convergence and performance.

In order to understand the role of the global search
heuristics (GA and SA) in the algorithm, we can compare
the results obtained by the HNN working with and without
global heuristics. To do this, we launched 15 000 HNNs for
each problem (without global search heuristics), keeping
the best and average values obtained. Table 5 shows these
results. The solutions obtained by the HNN are poor
quality ones compared with the solutions obtained by the
hybrid approaches WBP-HNN_GA and WBP-HNN_SA
(see Table 2). Note that the differences between the HNN
without global search heuristics and the hybrid approaches
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are more pronounced in the large size problems than in the
small size ones. In average, the HNN without global search
heuristic obtains poor solutions to the WBP. This is
somehow expected, since the HNN does not take into
account the objective function in its dynamics, but only the
problem’s constraints. On the other hand, the HNN is able
to converge to feasible solutions fast. This can be seen in
Fig. 6, which shows the percentage of convergence of the
HNN. The percentage of convergence is calculated as the
number of HNN runs which provide feasible solutions,
divided by the total number of HNN launched (15 000 in
this case). Note that its convergence is over 95% in all the
instances considered. This point is important to hybridize
the HNN with the GA or the SA algorithms guaranteeing
the feasibility of the solutions.

4.3. An application of the WBP in mobile communications

network design

In this Subsection, we show the application of the WBP
to the design of a mobile communications network. Given
the set of BTSs and controllers of the Fig. 7, and following
the definitions in Section 2.1, the problem consists of
assigning BTSs to controllers, in such a way that the sum of
the distances between BTSs and the corresponding
controllers to be minimum, and a constraint of capacity
in the controllers is fulfilled. There are 80 BTSs and 5
controllers in our problem, which positions have been
randomly generated in a 200� 200 grid. We consider that
once a BTS is assigned to a controller, the capacity of the
controller is reduced one unit. Note that in this case, we
consider the capacity of the BSCs as the number of
network interfaces towards the BTSs, and not as the
amount of traffic the BSC can handle. The capacity of each
controller is fixed to be 17 for our simulation, so each
controller can handle a maximum of 17 BTSs.
Some of the BTSs in the network can serve as
multiplexers (see Fig. 8), concentring the traffic generated
by a group of BTSs and forming a second level in the
management the network traffic. The number of multi-
plexers in a mobile communications network can vary a lot
depending on the structure and size of the network. We fix
the number of BTSs acting as multiplexers to N ¼ 10 for
our application.
It is easy to see the WBP structure in a mobile network

design application like the one we consider above: the
guests in the WBP are the BTSs in the network design
problem, the groups in the WBP are associated to
the multiplexers in the network and finally the tables of
the WBP are the controllers in the network. Fig. 8 shows
the position of the BTSs serving as multiplexers in our
problem (triangles in the figure). In order to define these
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multiplexers’ position, we define the matrix H following the
indications given in Section 2.1 (hij ¼ k=dij). The groups
are formed then by obtaining N BTSs out of the total L, in
such a way that the value of

P
hij , i ¼ 1; . . . ;N, j ¼

1; . . . ;L is maximum. Note that all the guests in each group
get on well with each other, i.e. the distance between them is
the minimum possible. Note also that in this application,
we use the matrix H of relationship between guests to form
the groups.

Once the groups are formed, the WBP is completely
defined by choosing an objective function. In this case, it is
easy to see that the objective function to be minimized must
be the distance between groups and tables (distance
between multiplexers and controllers). As can be seen in
Fig. 8, the WBP we must solve consists of 70 guests, 10
groups and 5 tables. We have solved the problem using
both hybrid approaches presented in this paper, and both
of them found the same solution to the problem, expressed
as the matrix ÂT (T stands for transposition):

ÂT ¼

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

.

In this solution, groups 3 and 9 are assigned to Table 1,
groups 2 and 8 are assigned to Table 2, groups 1 and 5 to
Table 3, group 6 is assigned to Table 4 and finally groups 4,
7 and 10 are assigned to Table 5. It is easy to check that this
assignment fulfils the capacity constraint of the tables, and
it is optimal, in the sense that the sum of the distances from
multiplexers to BSCs is the minimum possible.
5. Conclusions and future lines of work

In this paper we have presented an extension to the
terminal assignment problem (TA), the so-called wedding
banquet problem (WBP), which generalizes the TA in the
case that groups of terminals must be assigned together.
We have presented a mathematical definition for the WBP
and introduced two hybrid metaheuristics algorithms for
solving it. Both metaheuristics are based on a local–global
search scheme, where the local algorithm is a Hopfield
neural network which manages the problem’s constraints.
On the other hand, the global search algorithms try to
improve the quality of the solutions found by the Hopfield
network. We have tested as global search heuristics a
genetic algorithm and a simulated annealing approach. The
WBP have direct application to the design of mobile
communication networks. We have described in the paper
one of these applications in telecommunications. Other
applications of the problem can be described and analyzed
in the future.
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