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Abstract—We present an evolutionary approach to speaker seg-
mentation, an activity that is especially important prior to speaker
recognition and audio content analysis tasks. Our approach con-
sists of a genetic algorithm (GA), which encodes possible segmen-
tations of an audio record, and a measure of mutual information
between the audio data and possible segmentations, which is used
as fitness function for the GA. We introduce a compact encoding
of the problem into the GA which reduces the length of the GA
individuals and improves the GA convergence properties. Our al-
gorithm has been tested on the segmentation of real audio data,
and its performance has been compared with several existing algo-
rithms for speaker segmentation, obtaining very good results in all
test problems.

Index Terms—Genetic algorithms (GAs), mutual information,
speaker segmentation, unsupervised learning.

I. INTRODUCTION

NSUPERVISED learning is generally associated with

the idea of using a collection of raw observations
{x1,...,Xp}, sampled from an unknown distribution p(x),
to describe properties of p(x). Unsupervised learning has
been useful, among other applications, for classification [1],
clustering [2], image segmentation [3], and word segmentation
in the audio domain [4]. This paper deals with the problem of
audio segmentation.

With the ever-increasing number of television (TV) channels
and radio stations, many hours of TV and radio broadcasts are
collected every year by national heritage institutions and private
companies. Apart from the architectural problems underlying
the design of databases for storing these data, another crucial
problem is information retrieval. In audio data files, information
retrieval is normally performed by indexing the audio databases,
associating each audio document with a file describing its struc-
ture in terms of retrieval keys [5]. To perform full indexing, an
essential initial step is to determine which speaker is speaking at
a given time. This process is known as “speaker segmentation”
of the audio data base.
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Speaker segmentation consists of distinguishing the utter-
ance of one speaker from another in an audio document. In
addition to indexing, the segmentation of audio databases can
be useful for speech recognition purposes [5], speaker verifi-
cation [6], low bit-rate audio coding, environment and channel
change detection, or providing interesting additional informa-
tion such as speaker turn and speaker identities (allowing the
automatic indexing and retrieval of all occurrences of a same
speaker) [7].

The problem of segmenting an audio record has been tackled
recently using distance-based methods [7]-[9] and hidden
Markov models [10]-[12]. The former approach obtains good
results in the segmentation of speech databases, but some prob-
lems of accuracy in the tests performed have been reported,
such as the missed detection of short segments. In addition,
its performance relies on the selection of a certain threshold
which has to be empirically tuned according to the audio record
characteristics. The latter method has the drawback that hidden
Markov models need to be trained, so a previously labeled
training database, or an initial segmentation of the database, is
needed. In this paper, we propose an approach that solves these
two drawbacks.

Specifically, we consider the problem of the segmentation of
audio records containing two speakers. The problem consists
of automatically marking the periods of time in which each
speaker is talking (speaker turns). We propose an approach to
this task which uses an unsupervised learning algorithm, formed
by a genetic algorithm (GA), for maximizing a measure of mu-
tual information (MI) between classes and data. MI is a concept
taken from information theory [13], which measures the quan-
tity of “common” information between a sequence of labels C'
and a vector of data x. Intuitively, signals with a high degree
of MI between samples and classes are more easily separable
than others that contain a lower level. In this paper, we use a
novel approach to MI [14], which is based on direct approxima-
tion of entropy. The samples x, involved in the calculation of
1(x,C), are the mel frequency cepstrum coefficients (MFCC) of
the audio record; whereas, the sequence of classes C' consists of
a sequence of binary values {0, 1} representing which speaker is
currently talking (each bit represents 10 ms of the audio record).
A GA is then used to obtain the sequence of labels C° which
maximizes the MI I(x, C). Since the problem consists of seg-
menting audio records containing only two speakers, a GA with
binary representation is suitable for this purpose. Thus, every
sequence C' is codified in the GA as a binary string (GA in-
dividual) and represents a possible segmentation of the audio
record. After the evolution of the GA, the best solution found
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represents the optimal sequence C'° (segmentation of the audio
record). Note that alternative approaches can be used for max-
imizing the MI; simulated annealing seems to be another ap-
pealing option, since it could also be implemented with binary
encoding and using the compaction factor. Also, variable length
GAs which codify the speaker changes as integer numbers in-
stead of binary strings [15] can be applied to solve the problem.
Other approaches like fuzzy coding GAs [16] or estimation of
distribution algorithms (EDAs) [17] could also be used to solve
the problem.

To improve the performance of our algorithm, we have intro-
duced several modifications to the basic GA working scheme
stated above. Note that the time a given speaker is talking can be
represented in the GA by a string of all 1 s (or 0 s). Since a given
speaker rarely talks less than 1 s, it is possible to compact every
binary string in the GA by a compaction factor (CF). Thus, a bit
in the compacted string represents CF bits in the noncompacted
string. We run the GA in the space of the compacted strings,
but the calculation of the fitness values is performed with non-
compacted strings. This process allows us to have shorter binary
strings in the GA, and its performance in convergence time is
improved.

The use of compact solutions encodings in GAs is not a new
topic. There are several works in the literature where the use
of compact representations improves the GA performance on a
given problem. For example, in [18], a hybrid GA is used for
solving the frequency assignment problem in satellite commu-
nications, using a compact representation of the problem first
introduced in [19]. In this case, the use of a compact encoding,
instead of the standard one for this problem, is useful for man-
aging the problem’s constraints. This is also the case in [20],
where a GA for the minimum unserviced allocation problem
(MUA) is presented. The authors define an alternative encoding
which modifies the search space, improving the performance of
the GA proposed in the MUA. Another interesting paper which
introduces a compact representation in a GA is [21]. This paper
presents a GA with a compact solution encoding for the con-
tainer ship stowage problem. In this case, the use of the compact
representation allows a significant reduction of the search space;
thus, the GA is able to find more accurate solutions in less time
than using the standard representation for this problem. Note
that the idea behind our CF is similar to that in [21]: to obtain a
reduction of the search space which makes the problem tractable
for the GA.

We have tested our approach in the segmentation of real audio
records of different lengths, involving: 1) two male speakers;
2) two female speakers; and 3) one male and one female speaker.
We have compared our approach with some other algorithms for
speaker segmentation. First, we compare the results obtained by
our GA against the results obtained by the DISTBIC algorithm
[7]. In spite of the fact that the DISTBIC algorithm solves a more
general problem (it relaxes the constraint that only two speakers
are involved in the dialogue, as this paper assumes), it is still one
of the best known algorithms for solving the speaker segmenta-
tion problem, and a comparison with it can provide some insight
into the performance of our algorithm. In Section III, we show
that our approach obtains significant improvements over DIS-
TBIC in all test problems tackled. In addition, we compare our

GA against other unsupervised algorithms which can be used
for speaker segmentation, such as a standard clustering algo-
rithm and a hidden Markov model (HMM). The comparison
with all these methods shows that the GA proposed in this paper
is a competitive method for solving the segmentation of audio
records.

This paper is structured as follows: Section II, we give the
background needed to follow the rest of the paper, including
a brief description of MFCC and some previous approaches to
speaker segmentation that can be found in the literature. Sec-
tion III introduces the proposed GA. It is subdivided in two sec-
tions: first, the MI measure used as fitness function is described
in Section III-A, and second, the modifications for adapting the
GA to the speaker segmentation problem are described in Sec-
tion III-B. Section IV shows the results obtained by our algo-
rithm segmenting real audio records, and they are discussed
through comparison with the results obtained by some other ap-
proaches to the problem. Finally, Section V concludes the paper.

II. BACKGROUND

In this section, we provide some background needed to follow
the rest of the paper. We include the description of the MFCC
parameterization of speech signals, some previous approaches
to the segmentation of audio records and an overview of the
concept of detectability in audio records, which will be used
later.

A. MFCC Parameterization of Speech Signals

Speech (in general, audio) signals need to be parameterized
prior to segmentation. Parameterization consists of the extrac-
tion of a set of features from the speech waveform, which must
present two main characteristics: they must provide a reasonable
and compact representation of the speech signal (usually, in the
time-frequency domain) and they must have adequate discrimi-
nation capabilities for distinguishing between sounds.

MEFCC [22] are the most commonly used Fourier-based pa-
rameters in automatic speech recognition and speaker recogni-
tion applications. In this case, we have decided to use MFCC
as proposed in [8]; although, there are many other alternatives
(see [23] for more details). Usually, speaker change detection is
used for indexing and retrieving information from spoken doc-
uments. In this context, automatic speech recognition is used
for extracting textual information from audio records. Thus, the
use of the same kind of parameters for both the speaker change
detection and speech recognition procedures allows a useful re-
duction in the computational load and memory requirements.
Here, we have used 12 MFCC parameters, extracted at a frame
period of 10 ms. Although it is usual to complete the feature
vectors with their corresponding first derivatives (the so-called
A-coefficients), we have not proceeded in this way, following
the conclusions extracted by [7], since there is no evidence that
A coefficients are statistically significantly better or worse than
MFCCs.

The procedure for extracting the MFCC parameters is illus-
trated in Fig. 1. The use of MFCC parameters is fairly wide-
spread in speech analysis, and the reader is referred to [22] and
[24] for a more detailed explanation on the MFCC generation.
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Fig. 1.

B. Previous Approaches to Segmentation of Audio Records

Different approaches for segmentation of audio records have
been proposed in recent years. They can be classified in three
groups.

1) Energy-based methods: In this approach, it is assumed
that sentences uttered by different speakers in a conver-
sation are delimited by pauses [25]. As a consequence,
the segmentation relies on the accuracy of an interspeaker
silence detector, which usually works by measuring the
energy of each segment and comparing it to a predefined
or adaptively estimated threshold. This technique presents
two important drawbacks. First, the accuracy of the seg-
mentation strongly depends on the choice of the energy
threshold; secondly, it is not always true that people speak
between significant silences.

Distance-based methods: This approach consists of mea-
suring the dissimilarity between two adjacent windows
of (parameterized) audio data. Depending on the degree
of dissimilarity, the system locates a change mark at the
point at which the dissimilarity is maximized. Several dis-
similarity measures have been proposed in the literature,
such as the generalized likelihood ratio [9], [26] the Kull-
back-Leibler distance, or the Bayesian information crite-
rion (BIC) [8], [27]. Again, the main drawback is the pres-
ence of a threshold which has to be tuned for each kind of
audio database. The DISTBIC algorithm [7], which is one
of the algorithms used in this paper for comparison pur-
poses, can be considered a two-pass segmentation method
belonging to this group. In the first pass, the generalized
likelihood measure is used for determining the approx-
imate situation of the segment boundaries; while in the
second pass, these changing points are refined by applying
the BIC criterion. A more detailed description of the DIS-
TBIC algorithm is given in Section IV-C. The clustering
approach [10] considered in this paper for comparison
also belongs to this group of segmentation algorithms.

Model-based segmentation: In this case, a statistical
model (for example an HMM [10]-[12], [28]) is trained
for a set of predefined acoustic classes (speech, speaker,
background noise, music, telephone speech, etc.). For
segmentation purposes, each frame (or various frames) of
the audio stream is classified using a maximum likelihood
criterion, and the segment boundaries are located at the
temporal point where a change of acoustic class occurs.
The main disadvantages of this method include the need
to predefine the number and nature of the acoustic classes
and the large quantity of labeled data needed for building
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Top-level block diagram of speech parameterization procedure. Diagram illustrates steps followed for extraction of MFCC coefficients.

the different acoustic models in a supervised manner.
This last drawback can be tackled using an initial seg-
mentation of the database, as has been shown in [10].

C. Detectability in Speaker Segmentation

The performance of the majority of the segmentation algo-
rithms strongly depends on the segment length in the audio
record. As reported in [8] and [7], short speaker turns are more
difficult to detect than longer ones. Chen and Gopalakrishnan
suggest in [8] a possible measure of the difficulty for detecting
a given speaker change, based on the concept of detectability.

Let T = {t;} be the sequence of true speaker turns; the de-
tectability of a certain changing point ¢; is defined as

D(ti) = min(ti i1+ 1, b — i + 1) (1)

where (t; —t;_1+ 1) is the length of the segment previous to the
changing point ¢;, and (¢;4+1 —¢; +1) is the length of the segment
following the changing point. In general, when the detectability
is low, the current changing point is more likely to be missed;
whereas, large values of detectability imply that the changing
point is often detected.

III. GENETIC ALGORITHM (GA) FOR SPEAKER SEGMENTATION

In this paper, the search for the sequence of labels C°, which
provides a segmentation of the audio record, is performed by a
GA. Since we tackle the problem of segmenting audio records
with two speakers, a binary representation of the problem seems
appropriate. Every sequence of classes C representing a pos-
sible segmentation of the audio record is codified by means of a
binary string, in which each bit represents 10 ms of audio (this
quantity is determined by the frame period used in the param-
eter extraction procedure (see Section II-A). That is, with the
frame period considered in this paper, every minute of audio is
encoded by a binary string of length [ = 6000 bits. We use a
standard GA [29], formed by a population of ¢ binary individ-
uals, which evolve by means of the classical genetic operators,
selection, crossover, and mutation. The fitness function associ-
ated which each individual of the GA is a measure of ML In
the following sections, we describe the measure of MI used as
fitness function and the reduction of GA individuals length by
means of the CF.

A. Fitness Function: MI

Since the formulation of Shannon’s Information theory, MI
has been considered a natural measure of the quantity of infor-
mation that two (or more) signals have in common. Analytically,
Ml s expressed as the Kullback—Leibler divergence between the
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joint probability density function (pdf) of the signals and the
product of the marginal densities [13]

I(u,v) = Dg (p(u, v)[p(w)p(v))

p(u,v)

/ p(u, v)log PWp(v) dudv. 2)
The calculation of this integral is not easy since the pdfs in-
volved are not usually available. However, some advantage can
be taken from the fact that one of the signals is discrete. Actu-
ally, this is the case in either supervised or unsupervised learning
problems, in which continuous signals are related to a set of dis-
crete, finite classes.

In terms of entropy, MI can also be expressed as

I(u,v) = h(u) — h(ulv) 3)

where
(w) = = [ pw)log p(u)du 4

and p(u) is the pdf of the signal.

In a learning problem, the variables involved are the multidi-
mensional data x € R? and a discrete and finite set of classes
C € {c1,¢a,...,cx} that are the patterns to be learned. Thus,

(3) may be reexpressed as

I(x,C) = h(x) — h(x|C)
=h(x) = Y _ pler)h(x|ck). (5)
k

Unfortunately, the problem of estimating the entropy is, in the
multidimensional case, extremely difficult. Nevertheless, suc-
cessful efforts have been carried out for one-dimensional sig-
nals. The problem of estimating the pdfs can be avoided by di-
rectly computing the entropies from statistics of the data. The
entropy of a one-dimensional variable may be stated as

h(z) = h(Zgauss) — J () (6)
where Zgauss follows a Gaussian distribution with the same vari-
ance as x and .J(z) is the so-called negentropy. This quantity is
always positive since a Gaussian random variable is, among all
the possible distributions with the same variance, the one with
the highest entropy. Two cumulant-based polynomial expan-
sions have been traditionally used for the estimation of the .J (z):
the Gram—Charlier series and the Edgeworth series [30]. How-
ever, the terms of a higher degree in the expansions make these
approximations very sensitive to outliers and samples coming
from the “tails” of the distribution.

Alternative estimations of the negentropy have been success-
fully used in previous works in independent component anal-
ysis. One approximation of .J(x) is given by

J(x) = ky [E {“XP <%> H )
e (E)-] o

+ks

where k; and ky are constants defined by k; = 36/(8v/3 — 9)
and ky = 24/(16v/3 — 27), respectively [31]. This expression
has been proven to be more robust and stable against outliers,
providing values for the negentropy quite close to the actual
ones [31].

Since this approximation is only defined for one-dimensional
signals, a slight modification on the cost function must be ap-
plied to make use of it. Instead of the original MI described in
(5), the MI between each of the MFCCs and C's will be com-
puted. Thus, the following approximation will be used:

I(x,0) ~ Z I(z;,C) ®)

where xz; stands for a MFCC coefficient. This approximation
assumes that the cross entropy between the components is high,
and the MI between them negligible. This is the expression we
use as the fitness function for the GA.

B. Reduction of GA Individual’s Length

As mentioned above, every individual in the GA encodes
every minute of audio to be segmented by means of a binary
string of length [ = 6000 bits. This implies that the search space
will have a size of 26990 In such a search space, the GA will
have problems of convergence, obtaining low-quality solutions.
This situation would be even worse with larger audio records,
for example in an audio record of 10 min it would be necessary
to use binary strings of [ = 60 000, making it computationally
expensive for the GA to converge to a solution.

It is possible to overcome this difficulty by looking at the
problem’s structure. First of all, note that we have codified a so-
lution with an accuracy (resolution) of 10 ms. That is, we would
be able to detect changes in the speaker with such accuracy using
the representation exposed above. This also means that 1 s of
audio is represented by 100 bits. On the other hand, in a stan-
dard audio record, a speaker rarely talks for less than 1 s. This
means that the correct solution will have large strings of all 1 and
0 s, representing the segmentation of the audio. For example, if
a speaker talks for 3 s before changing to other speaker, the op-
timal solution would be a string of 300 1 s (0 s) before changing
to 0 s (1 s). Thus, it is possible to reduce the length of the GA
individuals by compacting a number CF of bits into one. In the
new representation CF bits are codified as one bit, so the new
length of the GA individuals will be I’ = [/CF.

In our approach, the GA operates on this new representation
I’, which reduces the search space and improves GA’s conver-
gence. We say then that the GA is being run in its compacted
form. Note, however, that the calculation of the fitness involves
individuals of length [ and not !’ (because of the audio data
length), so every individual in the compacted GA has to be ex-
panded, i.e., every bit is expanded to CF identical bits, for the
fitness calculation.

This length reduction of individuals in the GA obviously af-
fects the accuracy of the encoding. Using the expanded repre-
sentation, we have an accuracy of 10 ms for detecting changes
of speaker. If we use the compacted form of the GA, the accu-
racy of segmentation is reduced to 10 - C'F' ms. Thus, if, for
example, an accuracy of 1 s is acceptable for detecting speaker
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changes, we could set CF' = 100, and the length of individuals
in the GA will be reduced as I’ = (1/100). If we want a higher
accuracy, the CF has to be smaller.

IV. SIMULATIONS AND RESULTS

In this section, first, we briefly describe the speech databases
used in the simulations. Secondly, we describe the assessment
measures considered and the different algorithms implemented
for comparison purposes. Finally, we report and discuss the re-
sults obtained by our algorithm.

A. Test Problems

Two different types of speech data have been used to test the
performance of our algorithm: artificially created audio records
and real audio records from TV interviews.

1) Fifty conversations involving 76 different speakers, with
a total duration of approximately 62.20 min, were arti-
ficially created by concatenating sentences from the Re-
source Management RM1 Database [32]. This database
consists of speech recorded at 16 kHz in clean conditions,
and it has been widely used by the speech technology
community for automatic continuous speech recognition
assessment. The original pauses between sentences were
shortened to an average duration of approximately 190 ms
for a better simulation of real conversations. The conver-
sations created contain a total of 1071 speaker turns, and
the duration of each segment varies from 1.05 to 7.25 s,
with an average length of 3.33 s. Fig. 2(a) shows the per-
centage of segments with a given detectability in the artifi-
cial data used. Note that the percentage of short turns with
a detectability less than 2 s is over 14%, the percentage
of speaker turns with a detectability between 2 and 3 s
is about 50%, and the changing points with a detectability
more than 3 s is about 36%. In these experiments, we have
divided these conversations into three groups according to
the different types of speakers involved: male—male, fe-
male—female, and male—female. Table I shows the main
characteristics of these problems, numbered as 1, 2, and
3. A CF of 20 (which corresponds to a segmentation res-
olution of 200 ms) was used in each case.

A total of 35 TV news broadcasts (corresponding to in-
terviews) with a duration of 55.80 min were extracted
from the 1997 HUB English Evaluation Speech Database,
distributed by NIST [33]. The conversations involve 36
different speakers in this case. The original aim of this
database was to foster research on the problem of accu-
rately transcribing broadcast news speech, in which the
first step is the segmentation of the speech data into ho-
mogeneous segments (same speaker, same acoustic envi-
ronment). The selected data contains spontaneous speech
recorded at 16 kHz and at different acoustic conditions
(clean and in a telephone environment). NIST provides
hand segmentations of this data that we have used as a
reference. The conversations extracted from this database
contain 128 segment boundaries, which correspond to an
average segment length of approximately 20.54 s, with
a maximum length of 73.21 s and a minimum of 0.75 s.
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Fig. 2. (a) Detectability histogram for RM1 database used. (b) Detectability
histogram for NIST HUB 97 database used.

Fig. 2(b) shows the percentage of segments depending on
its corresponding detectability. In this case, the percentage
of short speaker turns with a detectability less than 2 s
is about 33%, whereas 67% of the segments have a de-
tectability of more than 2 s. The average duration of the
pauses between speech segments is about 210 ms. This
length distribution is typical for interviews, in which the
shortest segments usually correspond to the questions of
journalists. Note the differences in detectability [Fig. (2a)
and (b)] between real and artificial audio records. Again,
different types of speakers have been considered in the
conversations: male—male, female—female, and male—fe-
male speakers. Table I shows the main characteristics of
these problems (4, 5, and 6). Note that, in this case, the CF
used was 30 (which corresponds to a segmentation accu-
racy of 300 ms), due to these audio records being longer
than the artificial ones.

B. Assessment Measures

We distinguish between two types of errors related to speaker
turn detection. False alarms, or Type-I errors, occur when a
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TABLE 1
MAIN CHARACTERISTICS OF TEST PROBLEMS TACKLED

Problem  Data  Duration Percentage of CF  Number of Type of
# Base (minutes) segments with D < 2's speaker turns speakers
#1 RM1 21.10 16.24 20 361 male-female
#2 RM1 20.70 9.85 20 382 male-male
#3 RM1 20.41 20.15 20 328 female-female
#4 HUB 97 25.80 50.75 30 52 male-female
#5 HUB 97 21.12 18.35 30 54 male-male
#6 HUB 97 8.90 27.27 30 22 female-female

speaker turn is detected although it does not exist. The false
alarm rate (FAR) is defined as

“number of actual speaker turns 4+ number of FA o

Missed detections, or Type-II errors, occur when the process
does not detect an existing speaker turn. The missed detection
rate (MDR) is calculated as

number of MD

MDR = 100 - %.
number of acutal speaker turns %

(10)

In our context, a missed detection is more severe than a false
alarm; see [7].

Some authors [9], [11] use two different measures [preci-
sion (PRC) and recall (RCL)], which are closely related to false
alarm (FA) and missed detection (MD) rates. They are defined
as

PRC =100 x number of correctly found speaker turns

number of hypothesized spaker turns

(1)

number of correctly found speaker turns
0.

RCL =100 x
number of actual speaker turns

(12)

As it is difficult to compare the performance of different
algorithms examining FAR-MDR or PRC-RCL pairs, a new
metric referred to as the F measure is frequently used [9], [11].
It is computed as a function of precision and recall measures as
follows:

P 2.0 x PRC x RCL
" PRC +RCL

F-measure values fall between zero and one. Algorithms
achieving an F measure close to one show the best performance.

To compute these different metrics, it is necessary to take into
account that the position of the speaker turns are not exactly de-
fined, due to the presence of interspeaker silences or nonspeech
sounds [11]. Therefore, it is considered that a changing point is
correctly located if it belongs to a time interval [t, — At, t, +
At] in which ¢, is the reference mark and At is the tolerance
(600 ms, in our case).

In the experiments described as follows, we will indicate
FAR, MDR, PRC, RCL, and F measure achieved by our algo-
rithm segmenting the audio files, and we use these parameters

13)

for comparing the performance of our algorithm with DISTBIC,
clustering, and HMM segmentation methods.

C. Algorithms for Comparison Purposes

1) DISTBIC: The DISTBIC algorithm [7] is based on the
Bayesian information criterion (BIC), first proposed in [34].
BIC uses a likelihood ratio, in which it is decided whether two
fragments belong to the same source or to two different ones. The
log-likelihood ratio associated with the frame ¢ is defined as

R(i) = log L(Ho) (14)

(H1)L(H>)

where H), is the hypothesis that there is not a change of source
in 4. L(Hp) is its corresponding likelihood when a Gaussian
distribution is assumed. H; assumes all frames with index < ¢
to belong to speaker 1, and so H, goes with index > ¢ and
speaker 2.

BIC criterion takes also into account the complexity of the

solution. The cost function is given by

ABIC(i,m) = —R(i) + AP(m) (15)
where P(m) is the penalizing term when m parameters are used,
with A\ being a threshold parameter. Samples with the higher
ABIC are the most likely to correspond to a change.

DISTBIC is based on an sliding windowing that applies
BIC to frames all along the sequence. After measuring the
ABIC(i,m), DISTBIC carries out two later steps of refine-
ment and validation that improve the performance obtained if
just the BIC criterion were applied.

There are two main parameters (apart from the threshold pa-
rameter \) DISTBIC depends on. The first one is the size of the
sliding window from which the Gaussian models are built, i.e.,
the number of samples with index < ¢ the hypothesis H; is built
in accordance with. This size is usually maintained fixed, with
a typical value of 1 s [7]. The second parameter is the shift of
the window, which determines the resolution of the method.

2) Clustering-Based Segmentation: Speaker segmentation
of audio data files can be carried out by using a group average
hierarchical agglomerative clustering algorithm as proposed in
[10]. This technique consists of dividing the audio data into a
certain number of segments (clusters) and iteratively merging
two clusters according to a predetermined metric. As we know
that all the audio records considered contain two speakers, this
procedure finishes when two clusters (each one containing the
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part of speech uttered by each speaker) are obtained. Note that
the information about the number of speakers in each audio
file is also used in the HMM-based (see next section) and GA
approaches.

In the initialization stage of the clustering algorithm, the data
are divided into segments of equal length. The initial size of
the clusters determines the resolution of the segmentation pro-
cedure and, in this sense, it plays a similar role to that of the CF
factor in the GA approach. Thus, for allowing a fairer compar-
ison to the GA method, the clusters have an initial size of CF in
both databases; in the RM1 database, initial clusters consist of
200 ms of speech, and in the HUB 97 database, they consist of
speech of 300-ms length.

The distance between two clusters is based on the log-likeli-
hood ratio defined in (14). For the computation of corresponding
likelihoods, each cluster is modeled by tied mixtures of multi-
variate Gaussian distributions in the cepstral space, which are
trained following the procedure described in [10]. We have car-
ried out different experiments varying the number of mixtures
and we find that, for our databases, the best results are obtained
using 32 mixtures.

3) HMM-Based Segmentation: Hidden Markov models can
also be used for speaker segmentation, as has been shown in [10]
and more recently in [11] and [28].

In this case, speakers are considered different acoustic
classes. Each of these classes is statistically represented by a
mixture of multivariate Gaussian densities which are trained
before the segmentation. Then, the audio data is classified using
a maximum likelihood criterion with a Viterbi decoder [35]
that yields a set of boundaries between classes corresponding
to the hypothesized speaker turns.

For building the corresponding models, some labeled data is
needed. As in real applications, it is probably difficult to obtain
this audio data; so, we have adopted an unsupervised strategy
in the training stage as proposed in [10]. In particular, we have
used the segmentation provided by the agglomerative clustering
method described in the previous section for the initialization
of the speaker models which are adequately retrained using the
well-known Baum—Welch algorithm [35].

For designing the HMM-based segmenter, we have used the
HMM topology shown in Fig. 3. A similar approach has been
proposed in [12] for speech and music segmentation and re-
cently adapted for speaker segmentation purposes in [28]. As
in Fig. 3, the system consists of two fully connected HMM sub-
networks, each one corresponding to each speaker. Both subnet-
works are fully connected in order to allow transitions from one
speaker to another, and vice versa. Internally, each subnetwork
is composed of several left-to-right connected states associated
with the same mixture Gaussian distribution. Self loops are only
allowed in the last state. The number of concatenated states im-
poses a minimum segment duration and determines the resolu-
tion of the algorithm; whereas, the self-transition of the last state
makes it possible to increase the segment duration as much as
necessary. For a better comparison with clustering and GA ap-
proaches, we have enforced the same constraint of minimum du-
ration: 200 ms for the RM1 database and (which corresponds to
20 internal HMM states) and 300 ms (30 internal HMM states)
for the HUB 97 database.

181

Speaker 1

Speaker 2

Fig. 3. HMM topology for HMM-based speaker segmentation system.

As information about prior probabilities of speakers is not
available, we have assumed that both speakers are equally likely.
Transition probabilities between speakers have been empirically
selected in order to favor those remaining in the current state
(speaker 1 or speaker 2).

In our case, preliminary experiments showed that using 32
mixture components per internal state provides a good segmen-
tation accuracy, so we have used this value in the experiments
described in next subsection.

4) Comments on Compared Algorithms: First of all, note
that the DISTBIC is the most general algorithm considered, in
the sense that it is able to detect more than two speakers. On the
other hand, DISTBIC only detects changes between speakers,
without identifying which one is involved in the change. Also,
the DISTBIC algorithm depends on a threshold which must be
tuned in each database. The GA in this paper only considers the
segmentation of files containing two speakers. This is also the
case of the clustering and HMM approaches in the implementa-
tion considered in this paper. The clustering algorithm uses the
information about the number of speakers as the stopping crite-
rion. It also uses the same distance measure as the DISTBIC al-
gorithm. The HMM approach starts from the segmentation pro-
vided by the clustering algorithm in order to initialize the cor-
responding acoustic models. Note that in this sense, the HMM
algorithm is expected to perform better than the clustering and
DISTBIC algorithm. Note also that the GA only uses the mutual
information between MFCC and classes for guiding the search,
without any kind of initialization.

D. Results

A conventional GA [29] is used in the simulations, with the
MI described in Section III-A as the fitness function, a popula-
tion of ¢ = 50 individuals, probability of crossover P. = 0.6,
probability of mutation P, = 0.01, and maximum generations
equal to 1000. A compaction factor CF = 20 has been used
in simulations with an RM1 database; whereas, CF = 30 has
been used in tests with the NIST HUB 97 database, as can be
seen in Table I. These selections of CF allow a balance between
accuracy and length reduction of the GA individuals in the prob-
lems considered.

We compare results from our new algorithm with those
obtained using an implementation of DISTBIC, the clustering
method, and the HMM-based algorithm described in Sec-
tion IV-C. As was mentioned in Section IV-C, DISTBIC is
a distance-based segmentation method. Therefore, its per-
formance strongly depends on the choice of the threshold of
speaker turn detection (15). A small value of this threshold pro-
duces an oversegmentation (an increase in the false alarm rate);
on the contrary, a large value produces an undersegmentation
of the data (an increase of the missed detection rate). In order
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Fig. 4. (a) DET curve obtained varying DISTBIC threshold parameter, and

FA-MD rates obtained using GA approach, for RM1 database. (b) DET curve
obtained varying DISTBIC threshold parameter, and FA-MD rates obtained
using GA approach, for NIST HUB 97 database.

to perform a detailed analysis of the DISTBIC algorithm, we
have carried out a set of experiments varying this threshold.
Then, the corresponding detection error tradeoff (DET) curves
have been obtained. DET curves show the relationship between
MD and FA rates as the DISTBIC threshold varies. Note that
the GA, the clustering, and the HMM-based algorithms will
produce a single point in the DET curves. In addition, the
DISTBIC algorithm also depends on the value of the shift of
the window parameter. We have conducted two different sets of
experiments, the first one with a shift of 100 ms and the second
one with a shift of 200 ms for the RM1 database as well as 300
for the HUB 97 database. These values are comparable with the
GA using CFs of 20 (200 ms) and 30 (300 ms), respectively.
The clustering and the HMM-based algorithms have also been
tested with the same resolution.

Fig. 4(a) shows the DET curves obtained with the DISTBIC
algorithm in the artificially created audio records, from RM1
database, and the GA, clustering, and HMM results, as the av-
erage over all the changing points in the database. We have en-

hanced the so-called equal-error rate (EER) point in the DET
curves of DISTBIC. The EER is defined as the point at which
false alarms equals missed detections. Note that the closer to the
bottom left-hand corner is the point obtained by the algorithm,
the better is its performance in the segmentation problem. Note
that the result obtained by the GA is below the DET curves of
DISTBIC, clustering, and HMM-based points. This means that,
for a given false alarm rate, the GA always obtains a lower value
of missed detections than the other algorithms, and vice versa.
Given a value of the missed detections rate, the corresponding
value of the false alarm rate is always lower using the GA than
using the other approaches.

Fig. 4(b) shows the DET curves, the GA, clustering, and
HMM results for the real conversations in the NIST HUB 97
database. It is easy to see that the GA also obtains in this case a
solution below the DISTBIC DET curves; its results are below
the points obtained by the clustering and the HMM algorithms.
Note that the EER points for the DISTBIC are obtained using a
different value of the threshold, which depends on the database
and also on the shift of the window.

To further analyze the performance of our approach, we also
present the results obtained by the GA, DISTBIC algorithm
(EER point), clustering, and HMM-based approaches when
there are different types of speakers involved in the conversation:
male—male, female-female, and male—female are the considered
cases. Tables II and III show the different values of FAR, MDR,
PRC, RCL, and F measure obtained by our algorithm compared
with the results obtained by the other approaches considered
(best results are highlighted in boldface). Note that these tables
detail the results given in average in Fig. 4.

The results in the RM1 (Table II) show that our GA ob-
tains better results than other approaches to the segmentation
problem. Note that our GA obtains on average (over all the
changing points) better results than the other approaches, in all
the measures considered. In problem 3 DISTBIC, with a shift
of 100 ms, obtains a better result in terms of FAR and PRC, but
the MDR and the RCL measures are in both cases much better
using the GA approach. In all cases, however, the result of F
measure obtained by the GA is better than the one obtained by
the other approaches considered.

The results in the HUB 97 database (Table III) show that
the GA obtains better results than DISTBIC in all cases, but
in problem 5, where DISTBIC obtains better results in terms of
FAR and PRC, GA is able to obtain better values of MDR, RCL,
and F measure. The clustering algorithm and the HMM-based
approaches are, in this database, able to obtain better results than
the GA in problem 4 (male—female). The GA obtains better re-
sults than the clustering and HMM-based algorithms in the rest
of the cases using this database. Summarizing, the GA obtains
better results considering the average of all speaker changes in
this database.

Fig. 5 compares the performance of our algorithm, only with
the DISTBIC algorithm (100 ms), in a conversation involving
two female speakers in NIST HUB 97 database (included
in problem 6). Vertical lines mark speaker turn. Note that
our approach is more accurate at detecting speaker changes
than DISTBIC in this particular problem. In this figure, it is
possible to see that most of missed detections produced by
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TABLE 11 TABLE III
CHANGE DETECTION RATES (FAR, MDR, PRC, RCL—ALL IN CHANGE DETECTION RATES (FAR, MDR, PRC, RCL—ALL IN
PERCENTAGES—, AND FACTOR F) OBTAINED WITH OUR APPROACH, PERCENTAGES—, AND FACTOR F) OBTAINED WITH OUR APPROACH,
COMPARED WITH DISTBIC, AGGLOMERATIVE CLUSTERING, AND COMPARED WITH DISTBIC, AGGLOMERATIVE CLUSTERING, AND
HMM-BASED METHODS FOR RM1 DATABASE. BEST RESULTS HMM-BASED METHODS FOR NIST HUB 97 EVALUATION
ARE INDICATED IN BOLDFACE DATABASE. BEST RESULTS ARE INDICATED IN BOLDFACE
Experiment FAR MDR PRC RCL F Experiment FAR MDR PRC RCL F
GA CA
#1 4.92 6.89 96.13 93.11 0.946 #4 2531 12.24 70.82 8776  0.783
#2 2.67 2.63 98.15 97.37 0.975 45 21.01 1.32 7954 98.68 0.880
#3 1854 19.03 76.04 80.97 0.784 46 833 000 9167 100.00 0957
Average 8.29 9.08 90.71 90.87 0.906
Average 20.57 5.53 T78.09 9448 0.854
DISTBIC (A = 2.5) Shift = 100 ms.
DISTBIC (A = 3.5) Shift = 100 ms.
#1 1045 896 91.31 91.04 0.912
#4 26.0 35.60 67.81 64.40 0.660
#2 21.54 10.85 72.04 89.15 0.797
#3 1214 27.73 80.40 7227 0.761 #5 10.35 17.93 90.76 82.07 0.861
Average 1492 1538 8110 8463 0.825 #6 87.14 909 6061 0091 0727
DISTBIC (A — 1) Shift — 200 ms. Average 21.31 2337 7626 7641  0.756
#1 19.23 2211 7743 87.80 0.823 DISTBIC (X = 2.7) Shift = 300 ms.
#2 28.35 27.89 61.40 72.11 0.663 #4 40.15 38.96 49.18 61.04 0.548
#3 25.02 2420 69.56 75.80 0.725 #5 28.00 29.92 62.23 70.08 0.659
Average 24.26 24.81 69.31 7857 0.736 #6 42.11 4091 44.83  59.09  0.510
CLUSTERING Average 35.36 3548 53.94 6452  0.588
#1 11.02 13.87 8815 86.13 0.871 CLUSTERING
#2 913 796 8.06 92.04 0.905 #4 11.37 1690 87.51 831  0.852
#3 27.89 2890 66.14 71.10 0.685 45 31.84 30.6 59.94 69.4 0.639
Average 1551 16.37 81.74 83.64 0.826 46 58.86 9.09 40.82 90.91 0.563
HMM
Average 28.17 21.33  67.56 78.67 0.712
#1 1095 9.06 89.10 90.94 0.900
HMM
#2 9.56 296 91.23 97.04 0.940
#3 18.98 2547 7345 7453 0.740 #4 912 1001 90.36 89.99 0.917
Average 12.91 1192 85.07 88.56 0.865 #5 32762091 65.67  79.09  0.717
#6 33.33 13.64 63.33 86.36 0.731
Average 23.25 1523  75.30 84.77 0.800

DISTBIC are due to short sentences; whereas, our approach
is able to accurately detect them. Fig. 6 shows two examples
of the GA convergence in conversations of problems 5(a) and
6(b), respectively. The fitness of the best individual in the
population is displayed. In both examples, the GA obtained
the best segmentation about generation 800, with no further
improvements in the remaining generations. Note also that
the value of MI is completely different from one conversation
to the other, depending on the MFCCs that characterize the
conversation.

E. Discussion

For the final discussion, first we analyze if the differences in
performance between our GA and the other algorithms com-
pared are statistically significant; after that, we offer more in-
sight about the GA’s performance, by means of analyzing its
behavior in problems with different detectability characteristics.

In Table IV, we show the values of a two-tailed z test [36]
performed on the differences between our GA and the other ap-
proaches considered, for RM1 and HUB 97 databases. We have
performed the z test using the average values of FAR and MDR
measures. Values marked with a } are significant at o = 0.05.
Note that the differences between our GA and all the other algo-
rithms are statistically significant in the RM1 database. For the
HUB 97 database, in FAR our GA is better than the DISTBIC

with shift of 300 ms and clustering, but there is not a statistically
significant difference in performance with the DISTBIC with a
shift of 100 ms and the HMM approach. However, our GA per-
forms statistically better than all the other compared approaches
in MDR.

Experiments carried out have demonstrated that the approach
proposed in this paper provides very good results in the seg-
mentation of audio records. We are interested then in analyzing
the behavior of the algorithms in problems with different de-
tectability characteristics. In Table I, it is possible to check the
detectability of the problems considered. Related to this, we
would like to study the accuracy of our algorithm detecting short
speaker turns compared with the accuracy of the other algo-
rithms. To study this, we have used the following:

Number of MD (D(t;) < 2s)
Total number of segments (D(t;) < 2s)’

(16)

This formula measures the amount of missed detections of
short speaker turns (detectability under 2 s) over the total of
short turns with a detectability under 2 s. Table V shows the
percentage of missed detection of short speaker terms for the
RM1 and HUB 97 databases and all the algorithms considered.
We found that, for the RM1 database, the average percentage
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Fig. 6. (a) GA convergence for one of conversations of problem 5. (b) GA
convergence for one of conversations of problem 6.

of missed detections for all of the database using our GA is
6.89%, lower than the value obtained by the other algorithms.

TABLE IV
Z-TEST VALUES OF STATISTICAL COMPARISON BETWEEN GA APPROACH
AND DISTBIC, CLUSTERING, AND HMM METHODS ACCORDING TO
THEIR RESPECTIVE PERFORMANCE (FAR AND MDR) FOR RM1 AND
HUB 97 DATABASES. f STANDS FOR VALUES OF 2 WHICH ARE
SIGNIFICANT AT v = 0.05

Experiment RM1 z value (FAR) zvalue (MDR)

GA - DISTBIC (A = 2.5) Shift = 100 ms. 5.15 447t
GA - DISTBIC (A = 1) Shift = 200 ms. 11.44° 9.92f
GA - CLUSTERING 5.561 5.091
GA - HMM 3.69' 2.15

Experiment HUB 97 z value (FAR) z value (MDR)
GA - DISTBIC (X = 2.5) Shift = 100 ms. 0,26 4,20f
GA - DISTBIC (A = 1) Shift = 200 ms. 5, 501 6, 39
GA - CLUSTERING 2,73t 3,811
GA - HMM 0,95 2,581

In the HUB 97 database, our GA missed only 12.31% of
short speaker turns; whereas, the DISTBIC ( shift = 100 ms)
algorithm missed 48.3% of them. The results of the clustering
and HMM approaches are more accurate than the DISTBICs;
however, they are still worse than those obtained by the GA.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an evolutionary technique
for solving the problem of speaker segmentation in an audio
record, which is a preparatory step in speaker recognition. We
have proposed a GA which encodes possible segmentations and
a measure of the MI between the samples of audio and the indi-
viduals of the GA, which is used as a GA fitness function. The
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TABLE V
MISSED DETECTIONS OF SHORT SPEAKER TURNS FOR RM1 AND
HUB 97 DATABASES

Number of MD (D(t;) < 2s)
Total number of segments (D(t;) < 2s)

Experiment (RM1)

GA 6.89 %
DISTBIC (A = 2.5) Shift = 100 ms. 23.54 %
DISTBIC (A = 1) Shift = 200 ms. 52.28 %
CLUSTERING 16.29 %
HMM 11.92 %

Experiment (HUB 97) Tl stamier of segments (D) <7
GA 12.31 %
DISTBIC (A = 3.5) Shift = 100 ms. 48.30 %
DISTBIC (A = 2.7) Shift = 300 ms. 52.74 %
CLUSTERING 32.81 %
HMM 20.76 %

performance of the GA is improved by introducing a more com-
pact encoding of the GA, by means of the CF, which reduces the
search space size and improves the convergence performance of
the algorithm. The performance of our approach has been tested
and discussed in real audio records and compared with several
existing algorithms for the segmentation of audio records, ob-
taining very good results in all audio records tested.

Regarding the future research starting from this paper, we
plan to extend the GA presented to the segmentation of conver-
sations containing more than two speakers. Several adaptations
in the GA and in the measure of MI would be necessary in order
to adapt our algorithm to that problem.
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