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Abstract—A hybrid Hopfield network-simulated annealing
algorithm (HopSA) is presented for the frequency assignment
problem (FAP) in satellite communications. The goal of this
NP-complete problem is minimizing the cochannel interference
between satellite communication systems by rearranging the
frequency assignment, for the systems can accommodate the in-
creasing demands. The HopSA algorithm consists of a fast digital
Hopfield neural network which manages the problem constraints
hybridized with a simulated annealing which improves the quality
of the solutions obtained.

We analyze the problem and its formulation, describing and
discussing the HopSA algorithm and solving a set of benchmark
problems. The results obtained are compared with other existing
approaches in order to show the performance of the HopSA
approach.

Index Terms—Combinatorial optimization, frequency as-
signment, Hopfield neural networks, satellite communications,
simulated annealing.

I. INTRODUCTION

N SATELLITE communication systems, the reduction of the

cochannel interference has arisen as one major factor for de-
termining system design [1]. With the increase of geostationary
satellites, this interference reduction has become an even more
important issue, due to the necessity of accommodating as many
satellites as possible in geostationary orbit [2]. To cope with
interference reduction, the rearrangement of frequency assign-
ments is considered an effective measure in practical situations
[2].

Frequency rearrangement can be formulated as a combina-
torial optimization problem known as frequency assignment
problem (FAP) for satellite communications. FAP belongs to
a class of optimization problems with constraints, in which a
goal function must be optimized and a set of constraints have
to be fulfilled for a solution to be feasible.

In this kind of problems, scalability is a major factor of the
algorithm design, due to the poor performance of nonscalable
algorithms when the size of the problem grows. In this context,
FAP has been solved before by using emerging methods such
as branch and bound [2] and Hopfield neural networks [1], [3].
Both techniques suffer from lack of scalability, which leads to
poor quality solutions in large, difficult problems.
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This paper follows the problem formulation on the FAP given
by Mizuike ef al. [2] in 1986 and Funabiki ef al. [1] in 1997.
Fig. 1 illustrates an example of two systems which suffer from
interference when they operate in the same frequency band.
Fig. 2 shows an example of the cochannel interference model
usedin [1] and [2]. The communications are assumed to be oper-
ated in the frequency band between F, and Fj. In this example,
three and four carriers are utilized in each satellite system, re-
spectively. The cochannel interference is evaluated by each pair
of carriers using the same frequency. Thus, in order to secure
the communication quality of all carriers, the largest interfer-
ence must be minimized among all pairs. In addition, the total
interference should be also minimized for the improvement of
the overall communication quality [1].

In this paper we propose a hybrid Hopfield network-sim-
ulated annealing (HopSA) for solving the FAP, in which a
fast digital Hopfield neural network (HNN) [4] manages the
problem’s constraints and a simulated annealing algorithm
(SA) [5] searches for high-quality solutions. We show that due
to the separated management of constraints and goal function
our algorithm is more scalable and achieves better results than
existing algorithms for the FAP.

The rest of the paper is organized as follows: in the next sec-
tion we define and analyze the FAP. In Section III the hybrid
Hopfield network-Simulated annealing algorithm is described,
by studying the Hopfield neural network and the SA which form
it. Section IV shows the performance of the HopSA algorithm,
by solving a set of benchmark problems and comparing the re-
sults obtained with previous algorithms for the FAP. In this sec-
tion some discussion about the computational cost of the HopSA
algorithm is also provided. Finally, Section V ends the paper
with some concluding remarks.

II. PROBLEM FORMULATION

Given two adjacent satellite systems (Fig. 1), FAP consists in
reducing the inter-system cochannel interference by rearranging
the frequency assignment on carriers in system #2 (M segments,
N carriers), while the assignment in system #1 (M segments)
remains fixed. Because each carrier usually occupying a dif-
ferent length in a frequency band, Mizuike et al. introduced the
segmentation of carriers so that every carrier can be described
by a collection of consecutive unit segments. The interference
between two M-segment systems is described by a M x M in-
terference matrix £, in which the ijth element ¢;; stands for
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Fig. 1.
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Fig. 2. Cochannel interference model of the system in Fig. 1.

the cochannel interference when segment #¢ in system #2 uses
a common frequency with segment #7 in system #1.
The constraints of the FAP are the following.

C1) Every segment in system #2 must be assigned to a seg-
ment in system #1.

C2) Every segment in system #1 can be assigned to at most
one segment in system #2.

C3) All the segments of each carrier in system #2 must be

assigned to consecutive segments in system #1 in the
same order.

In this paper, we use a mixed representation to solve the
problem, which was introduced in [2] and also used in [1].
This representation involves two matrices for completely
representing the problem: first an M x M matrix F is defined,
in such a way that f;; = 1 means that the segment #: in
system #2 has been reassigned to segment #j in system #1.
This matrix is called the reassignment matrix, and it is used
to calculate the objective function associated to the problem.
Matrix F' can be seen as the most intuitive representation of
the problem, where every segment in system #2 is directly
assigned to a segment in system #1. However, it is difficult
to manage problem’s constraint C3 using this representation.
Thus, another matrix F, (N x M), is defined such that ft j=1
means that first segment of carrier #: in system #2 has been
reassigned to segment #j in system #1, and the following seg-
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ments of the carrier go behind consecutively.! The fulfilment of
problem’s constraints can be better managed using as problem
representation matrix F. Note that between every two carriers
there must be a minimum separation in segments for constraints
C1, C2 and C3 to be fulfilled. Thus, a matrix C, (N x N), can
be defined, in which every element c;; stands for the minimum
separation in segments between two carriers #: and #j.

Taking into account the definitions above, we can mathemat-
ically formulate the FAP as follows:

Achieve an assignment F such that

min (Y(E, F)) ey

subject to
N ~
> fii=1 j=1,--M @)
i=1

and in such a way that the assignment F fulfils the constraints
in C: iffij =1and qu = 1then |j — q| > cip.

where y(E, F) represents an objective function depending on
the interference matrix £ and assignment matrix F'.

Note the mixed representation of the problem: matrix F' is
used for the calculation of the objective function, whereas ma-
trix F' is used to perform the reassignment of carriers between
the two systems, fulfilling the problem constraints.

A. Example

An example of a small FAP instance may clarify concepts.
First, consider the two systems (satellite-station) depicted in
Fig. 1. Imagine that the interference matrix between the two sys-
tems, F, is the one in Fig. 3. Note that both systems have M = 6
segments, and system #2 has N = 4 carriers. The FAP consists
in reassigning carriers of system #2, whereas system #1 is fixed.
Fig. 4 illustrates the segmentation of the systems, and a possible
reassignment when interference matrix in Fig. 3 is considered.
Fig. 5 shows this assignment in the mixed representation we use
to solve the problem. Fig. 5(a) shows matrix F'. Note that this
matrix fulfils the constraint in (2) (one “1” per row in F ), and
also fulfils the constraints in C (separation in segments between
one “1” and the following in F is at least equal to the length of
the carrier first “1” belongs). In Fig. 5(b) we can see how to get
matrix F from F, only knowing the carrier’s length. This ma-
trix F' will be used to calculate the objective function associated
to the problem.

III. PROPOSED APPROACH

The algorithm we propose for solving the FAP consists of a
hybrid global-local scheme, where a local procedure (Hopfield
neural network) manages the fulfilment of FAP’s constraints,
and a global algorithm (Simulated Annealing) looks for the min-
imization of the objective function.

A. Hopfield Neural Network

The Hopfield network we use as local algorithm for solving
the FAP constraints belongs to a class of digital Hopfield net-

IThis new matrix F can be calculated from F in a straightforward manner,
knowing the carrier’s length.
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works [4] where the neurons can only take values 1 or 0. The dy-
namics of this network depends on the matrix C, and, of course,
on the initial state of the neurons, see [4] for further details. The
structure of the HNN can be described as a graph, where the
set of vertices are the neurons, and the set of edges defines the
connections between the neurons. We map a neuron to every
element in the solution matrix . In order to simplify notation,
we shall also use matrix F' to denote the neurons in the Hopfield
network. The HNN dynamics can then be described in the fol-
lowing way: After a random initialization of every neuron with
binary values, the HNN operates in serial mode. This means that
only a neuron is updated at a time, while the rest remain un-
changed. Denoting by f; ;(t) the state of a neuron on time ¢, the
updating rule is described by

N min(M,j+cip)

fi;(t) = isgn Z Z

p=1g=maxz(1l,c; pt1)
pti ot

foa | Yisd 3

where the 2sgn operator is defined by

) _JO, ifa>0
isgn(a) = { 1, otherwise.

_ Note that the updating rule only takes into account neurons
fpq equal to 1 and within a distance of c;;, in columns of the el-
ement f” being updated. Note also that in this updating rule,
the neurons f;; are updated in their natural order, i.e., i =
1,2,...,N,7=1,2,..., M.

We introduce a modification of this rule by performing the up-
dating of the neurons in a random ordering of the rows (variable
1). This way the variability in the feasible solution found is in-
creasing. Let 7(4) be a random permutation of i = 1,2, ..., N.
The new updating rule of the HNN results

N min(l\/f,j+cw(,)_p)

>, X

p=l1 q=ma‘z(17c7r(i).p+l)
pF (i) o

friy;(t) = isgn foq | Vi g (@

The resulting updating rule runs over the rows of F in the
order given by the permutation 7 (), but the columns are up-
dated in natural order j = 1,2, ..., M. A cycle is defined as the
set of N x M successive neuron updates in a given order. In a
cycle, every neuron is updated once following the given order
(1), which is fixed during the execution of the algorithm. After
every cycle, the convergence of the HNN is checked. The HNN
is considered converged if none of the neurons have changed
their state during the cycle.2 The final state of the HNN dy-
namics is a potential solution for the FAP, which fulfils the con-
straints of the matrix C. Note, however, that the solution found
may be unfeasible if all the carriers are not assigned.

2The convergence of the neural network presented in this section only takes
a few cycles, see Section IV-C for a detailed analysis of its convergence in a
benchmark problem.
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Cl1 C12 C13
S11 S12 | S13 S14 | S15 S16

C21 | S21 f 20 20 40 0 25 25

S22 | 50 10 30 0 55 *
Cc22

S23 * 50 30 0 15 55
C23 | S24 f 30 30 45 0 35 35

S25 f 45 5 25 0 50 *
C24

sa6l * |45 |25 | O |10 |50

Fig. 3. Example of interference matrix for the system in Fig. 1.

B. Simulated Annealing

SA has been widely applied to solve combinatorial optimiza-
tion problems [5]—-[8]. It is inspired by the physical process of
heating a substance and then cooling it slowly, until a strong
crystalline structure is obtained. This process is simulated by
lowering an initial temperature by slow stages until the system
reaches to an equilibrium point, and no more changes occur.
Each stage of the process consists in changing the configura-
tion several times, until a thermal equilibrium is reached, and a
new stage starts, with a lower temperature. The solution of the
problem is the configuration obtained in the last stage. In the
standard SA, the changes in the configuration are performed in
the following way: A new configuration is built by a random dis-
placement of the current one. If the new configuration is better,
then it replaces the current one, and if not, it may replace the
current one probabilistically. This probability of replacement is
high in the beginning of the algorithm, and decreases in every
stage. This procedure allows the system to move toward the best
configuration. Although SA is not guaranteed to find the global
optima, it is still better than others algorithms in escaping from
local optima. The solution found by SA can be considered a
“good enough” solution, but it is not guaranteed to be the best.

The approach in this paper considers the mixing of a SA and
the Hopfield neural network presented in Section III-A. The
main idea behind this is that configurations involved in the SA
are feasible solutions for the FAP. The SA will then seek for the
best feasible solution with respect to a given objective function.
There have been similar previous approaches to other optimiza-
tion problems using a hybrid model SA-HNN [9], and SA hy-
bridized with other optimization procedures [10].

The most important parts in a SA algorithm are: the objective
function to be minimized during the process, the chosen repre-
sentation for solutions and the mutation or configuration change
operator. We present these three characteristics in the next sub-
sections.
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System #1 M m

S11 S12 S13 S14 S15 S16 Segment
System #2 C22 C24
Initial assignment €21 I €23 )
S21 S22 S23 S24 825 S26 Segment
System #2
Optimum assignment C21 L L C23
S24 825 S26 S22 S23 S21 Segment

Fig. 4. Segmentation of the system defined by Figs. 1, 2 and 3.

C. Objective Functions for the FAP

We consider three different basic objective functions for the
FAP. First, we want the solution to minimize the maximum peak
of interference between the systems (Largest interference), so
the first objective function will be

1(E, F) = max(e; - fij) Vi, j. ®)

Note that the matrix involved in this calculation is F', which can
be obtained from F following the process represented in Fig. 5.

The second objective function of the FAP requires that the
total interference of the systems to be minimum, so

M M

(B, F) =33 e fij. (6)

i=1 j=1

Finally, we also consider a third function which takes into
account both 7 and ~»

Note that y; will produce solutions with a very good value
of maximum interference, but the value of the total interference
may be high. On the contrary, 2 minimizes the value of the
total interference, but there may be large peaks of interference.
Function ~y3 allows a balanced situation, where both the values
of maximum and total interference can be controled.

D. Problem Representation

We encode every possible solution of the problem as the bi-
nary matrix F', N x M. We obtain a feasible solution by running
the HNN over an unfeasible F' randomly generated (at the be-
ginning of the algorithm) or generated by the mutation operator.
Only feasible solutions are considered: if the solution obtained
by the HNN is not feasible due to every carrier not having been
assigned, the solution is discarded and the mutation operator is
reapplied until a feasible solution is obtained by the HNN.

E. Mutation Operator

In order to obtain a new configuration, N, bits of the binary
matrix F' are flipped, passing from 1 to O or vice-versa. The
N, bits to be changed are randomly chosen among the N x M
possible.

1111

1 2 3 4 5 6

~€— Segment

Carrier

(@

-«€— Segment

Segment

l 1

(b)

Fig. 5. (a) Example of matrix F for the interference matrix of Fig. 2 (shaded
squares represent “‘1s” and whites squares “0s”). (b) Matrix F obtained from F'.

TABLE 1
MAIN FEATURES OF THE SET OF
BENCHMARK PROBLEMS

Problem # Carriers segments Range of Range of
carrier  interfer.
1 10 32 1-8 1-100
2 10 32 1-8 1-1000
3 18 60 1-8 1-50
4 30 100 1-8 1-100
5 15 50 1-7 1-1000
6 50 200 1-8 1-1000

E The Complete Algorithm

The complete algorithm for the FAP is formed by mixing the
SA and the HNN, and performs in the following way.

HopSA Algorithm:
k=0;
T =1To;
Initialize a potential solution at
random;

do

Run the HNN to obtain F;

} until (a feasible solution is ob-
tained)

(F%—»FU: evaluate (F, ;(E,F));

(Simulated Annealing)
repeat
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Fig. 6. Interference matrices of problems: (a) #1 and (b) #2. Symbol * stands for an infinity value of interference.

for .] =0 to E 1f((’7t(E/qut) < WL(EvF))) OR
Frput = mutate(F) (random(0,1) < e(=%/T))) then
do{ F = qut:’
Run the HNN to obtain F; endif
} until (a feasible solution is endfor
obtained) T = fr(To,k);
(qut — Frut): evaluate (Fout, Vi) k=k+1;

until(7T < Tpin);
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where £ counts the number of iterations performed; T keeps the
current temperature; 1 is the initial temperature; 7T}, is the
minimum temperature to be reached; F stands for the current
configuration and qut for the new configuration after the mu-
tation operator is applied; ; represents any of the three objec-
tive function considered (see Section III-C); £ is the number of
changes performed with a given temperature T; fr is the freezer
function; and «a is a previously fixed constant. Parameter a and
the initial temperature 7T are calculated in order to have an ini-
tial acceptance probability equal to 0.8, which is the value usu-
ally used. The freezer function is defined as

14k

The minimum temperature 7},,;,, is calculated on the basis of
the desired number of iterations as

fr

®)

Tmin = fT(T07 num[t) (9)

IV. SIMULATIONS AND RESULTS

In order to test the performance of the HopSA algorithm, a
set of benchmark problems have been selected. Table I summa-
rizes the main characteristics of the benchmark problems con-
sidered. Problems #1 and #2 are taken from Funabiki et al. [1],
where these are called problem #4 and #5, respectively. Fig. 6
shows the interference matrices of these problems. The interfer-
ence matrices as well as the carrier lengths (in segments) of all
benchmark problems tackled have been attached to this paper in
the electronic submission.

Algorithm in [1] has been programmed following the indi-
cations in that paper, in order to perform comparison in all test
problems.

The parameters of the HopSA algorithm remain unchanged
in all simulations performed: the number of iterations (numIt)
of the SA was fixed to 300 with ¢ = 50. Note that tuning the SA
parameters is important for ensuring the convergence to a good
enough solution of the problem in a reasonable time. Election
of numlIt or ¢ too small may produce that the SA stops in a
suboptimal solution. On the other hand, if these parameters are
chosen too large, the computational time of the algorithm would
be high. The parameters chosen in this paper seem to be a good
election in the problems considered. In mutation operator, the
value of N, was fixed to 20. This value has demonstrated to
be enough to perform a wide search over the space of matrices
F. Using function +y3, the best results were obtained by fixing
a =0.7and 8 = 0.3.

A. Results

Table II shows the results obtained by the HopSA algorithm
and a comparison with other algorithm results for the bench-
mark problems considered in largest interference (function ;).
HopSA algorithm equals or improves the results of other ex-
isting methods. These results show that the HopSA algorithm
performs well in difficult problems, achieving better results and
being much more scalable than existing algorithms.

Table III shows the results for the total interference in the as-
signments (objective function 72 ). Our algorithm achieves again
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TABLE 1I
COMPARISON OF THE RESULTS OBTAINED BY THE HOPSA ALGORITHM WITH
PREVIOUS APPROACHES (LARGEST INTERFERENCE, 1 ). PROBLEMS #1 TO #6

Problem # Mizuike [2] Funabiki (1] HopSA
1 67 64 64
2 803 640 640
3 - 49 41
4 - 100 96
5 - 919 672
6 - 1000 929
TABLE III

COMPARISON OF THE RESULTS OBTAINED BY THE HOPSA ALGORITHM WITH
PREVIOUS APPROACHES (TOTAL INTERFERENCE, 2 ). PROBLEMS #1 TO #6

Problem # Mizuike [2] Funabiki [1] HopSA

1 929 880 792

2 10330 8693 6851
3 - 1218 933

4 - 4633 3745
5 - 16192 11568
6 - 70355 59431

TABLE IV

RESULTS OF THE HOPSA ALGORITHM WITH 3. PROBLEMS #1 TO #6

Problem # s Total (y,) Largest (71)
1 324.6 886 84
2 2627.2 6851 817
3 334.2 1002 48
4 1296.5 4093 98
5 4584.9 13554 741
6 19091.0 61330 988

better results than existing algorithms and the differences are
getting larger as the problems become more complicated.

Table IV shows the results obtained by our algorithm when
function 73 is used. Note that using this function there is a bal-
ance between the maximum interference and the total interfer-
ence of the system. In this table we display the values of func-
tions 7 and 7y associated to the solution obtained using as ob-
jective function ~ys.

Fig. 7(a)—(c) shows the best solutions obtained by the HopSA
algorithm in problem #1 using objective functions v, 2 and
3, respectively. Note how different are the solutions achieved
by the HopSA algorithm when different objective functions are
used.

B. Discussion

We have shown that the HopSA algorithm outperforms ex-
isting algorithms for the FAP. However, a more detailed anal-
ysis may give some insight about how the HopSA algorithm
performs. First, Note that the HopSA algorithm achieves better
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Fig. 7. Best assignment achieved by HopSA algorithm in Problem #1 using objective functions v, (a), 2 (b), and 3 (c). All the segments in each carrier have
been depicted for a clearer explanation, instead of only the first segment of each carrier, as constraint in (2) imposes.

assignments with respect to objective functions «y; and 2 com-
pared to previous approaches. We interpret that the good perfor-
mance of the HopSA algorithm is due to the separated manage-
ment of problem’s constraints and optimization function. Note
that this makes our algorithm more scalable than other existing
algorithms which do not manage separately the problem’s con-
straints and the optimization process (better solutions are found
when the size of problem grows).

Second, it is easy to see that our algorithm may be used with
different objective functions in a straightforward manner. De-
pending on the necessities of the satellite systems designer, it
may be better to obtain solutions with low total interference or
low largest interference. Obtaining a balance between total in-
terference and largest interference is usually the most appealing

option. In this sense, objective function 3 should be used in the
design of the systems. The results obtained in this paper show
that the HopSA algorithm using objective function y3 provides
high quality solutions both in terms of the largest and total in-
terference, as can be seen in Table II. The case of problem #2 is
very interesting, since the same solution (shown in Fig. 8) has
been achieved with the objective functions 5 and ~ys.

C. Some Comments About the Computational Cost of the
HopSA Algorithm

The increasing of computational cost is the main drawback
when using a hybrid algorithm in a combinatorial optimization
problem such as the FAP. Thus, the design of the local and global
algorithms to be mixed must be as accurate as possible, taking
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Fig. 8. Best assignment achieved by HopSA algorithm in Problem #2 using objective function v, and 73.
100 f g T T T T T ; T FAP. We have performed a comparison of computational time
sk S e between our HopSA algorithm and the gradual neural network
: , ‘ programmed following [1], in our simulation platform (a SUN
BOp 17 SPARK 2/480 MHz.), for Problems #1 and #2. Funabiki’s al-
S O [ DO U SURUUUN SURUUNS SRR S |  gorithm needed about 1 minute for solving Problems #1 and
8 also about a minute for Problem #2, whereas HopSA algorithm
B e T O e s St S S 1 needed about 4 minutes for solving cach problem.
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Fig. 9. Number of cycles needed for the HNN convergence, in problem #5.

into account the computational cost as a primary factor. The de-
sign of the HopSA algorithm follows the hints bellow: first, the
SA algorithm only evolves one potential solution instead of a
whole family of potential solutions considered in other tech-
niques (genetic algorithms for example). Thus SA is a more
appropriate technique for finding good solutions for the FAP
quickly.

Second, the HNN used is a fast digital network, with very
good properties of convergence. We found that the HNN
achieves a feasible solution in the majority of runs, starting
from an unfeasible one. In addition, the speed of convergence
of the network is very good: As an example, Fig. 9 shows
that 75% of the HNN’s launched for solving problem #2
converged in three cycles.? Over 23% of the networks launched
converged in four cycles, and only about 2% of the networks
run converged in five cycles. The new updating rule introduced
in Section III-A, does not modify these values, because it
only changes the order of updating, not the structure of the
algorithm.

In spite of the accurate design of the HopSA algorithm, fo-
cused on reducing its complexity, it is expected that its com-
putational cost to be higher than existing approaches for the

3Recall that a cycle is defined as the updating of all the neurons in the Hopfield
network (see Section III-A).

V. CONCLUSION

In this paper, a hybrid Hopfield neural network-simulated
annealing algorithm (HopSA) for the frequency assignment
problem in satellite communications has been presented. The
algorithm consists of a N x M Hopfield neural network
(N-carriers, M-segments) which manages the problem’s
constraints, hybridized with a Simulated Annealing algorithm
which improves the solution obtained from the network. This
approach for the FAP is more scalable than previous algorithms
due to the separated management of constraints and goal
function.

Simulations in a set of benchmark problems have shown very
good performance of the algorithm, obtaining better solutions in
terms of largest and total interference than existing algorithms,
and showing the differences in scalability between HopSA and
the other algorithms.

REFERENCES
(11

N. Funabiki and S. Nishikawa, “A gradual neural-network approach for
frequency assignment in satellite communication systems,” IEEE Trans.
Neural Networks, vol. 8, pp. 1359-1370, Nov. 1997.

T. Mizuike and Y. Ito, “Optimization of frequency assignment,” IEEE
Trans. Commun., vol. 37, pp. 1031-1041, Oct. 1989.

T. Kurokawa and S. Kozuka, “A proposal of neural network for the op-
timum frequency assignment problem,” Trans. IEICE, vol. J76-B-II, no.
10, pp. 811-819, 1993.

Y. Shrivastava, S. Dasgupta, and S. M. Reddy, “Guaranteed convergence
in a class of Hopfield networks,” IEEE Trans. Neural Networks, vol. 3,
pp. 951-961, Nov. 1992.

S. Kirpatrick, C. D. Gerlatt, and M. P. Vecchi, “Optimization by simu-
lated annealing,” Science, vol. 220, pp. 671-680, 1983.

S. Kirpatrick, “Optimization by simulated annealing-quantitative
studies,” J. Stat. Phys., vol. 34, pp. 975-986, 1984.

J. Gonzilez, I. Rojas, H. Pomares, M. Salmeron, and J. J. Merelo, “Web
newspaper layout optimization using simulated annealing,” IEEE Trans.
Systems, Man Cybern. B, vol. 32, pp. 686—691, Oct. 2002.

G. Wang and N. Ansari, “Optimal broadcast scheduling in packet radio
networks using mean field annealing,” IEEE J. Select. Areas Commun.,
vol. 15, pp. 250-259, Feb. 1997.

(2]

(4]

(5]
(6]
(71

(8]



1116

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 2, APRIL 2004

C. Calderén-Macias, M. K. Sen, and P. L. Stoffa, “Hopfield neural net-
works, and mean field annealing for seismic deconvolution and multiple
attenuation,” Geophysics, vol. 62, no. 3, pp. 992-1002, 1997.

H. Kim, Y. Hayashi, and K. Nara, “An algorithm for thermal unit main-
tenance scheduling through combined use of GA, SA and TS,” IEEE
Trans. Power Syst., vol. 12, pp. 329-335, Feb. 1997.

R. Acosta, R. Bauer, R. J. Krawczyk, R. C. Reinhart, M. J. Zernic, and
F. Gargione, “Advanced Communications Technology Satellite (ACTS):
four-year system performance,” IEEE J. Select. Areas Commun., vol. 17,
pp- 193-203, Feb. 1999.

N. Ansari, S. H. Hou, and Y. Youyi, “A new method to optimizate
the satellite broadcast schedules using the mean field annealing of a
Hopfield neural network,” IEEE Trans. Neural Networks, vol. 6, pp.
470-482, Mar. 1995.

C. Bousoflo-Calzén and A. R. Figueiras-Vidal, “Emerging techniques
for dynamic frequency assignment: merging genetic algorithms and
neural networks,” in Proc. Inform. Syst. Technol. Symp., Aalborg,
Denmark, 1998, pp. 12.1-12.5.

S. Salcedo-Sanz, C. Bousofio-Calzén, and A. R. Figueiras-Vidal, “A
mixed neural-genetic algorithm for the broadcast scheduling problem,”
IEEE Trans. Wireless Commun., vol. 2, pp. 277-283, Feb. 2003.

H. Okinaka, Y. Yasuda, and Y. Hirata, “Intermodulation interfer-
ence-minimum frequency assignment for satellite SCPC systems,”
IEEE Trans. Commun., vol. 4, pp. 462-468, Apr. 1984.

K. C. Tan, Y. Li, D. J. Murray-Smith, and K. C. Sharman, “System iden-
tification and linearization using genetic algorithms with simulated an-
nealing,” in Proc. 1st IEE/IEEE Int. Conf. Genetic Algorithms Eng. Syst.,
1995, pp. 164-169.

S. Salcedo-Sanz and C. Bousofio-Calzén, “A hybrid neural-genetic al-
gorithm for frequency assignment optimization in satellite communica-
tions,” in Proc. . 5th Int. Conf. Optimization: Techn. Applicat., Hong-
Kong, China, 2001.

K. Smith, M. Palaniswami, and M. Krishnamoorthy, “Neural techniques
for combinatorial optimization with applications,” IEEE Trans. Neural
Networks, vol. 9, pp. 1301-1318, Nov. 1998.

J. Rose, W. Klebsch, and J. Wolf, “Temperature measurement and
equilibrium dynamics of simulated annealing placements,” IEEE Trans.
Computer Aided Design Integrated Circuits, vol. 9, pp. 253-259, Mar.
1990.

Sancho Salcedo-Sanz (S’00-M’03) was born in
Madrid, Spain, in 1974. He received the B.S. degree
in physics from the Universidad Complutense de
Madrid, Spain, in 1998, and the Ph.D degree in
telecommunications engineering from the Univer-
sidad Carlos III de Madrid, Spain, in 2002.

He is currently a Research Fellow in the School of
Computer Science, University of Birmingham, U.K.
He has coauthored more than 15 international jour-
nals and conference papers in the field of genetic al-
gorithms and hybrid algorithms. His current interests

deal with optimization in communications, hybrid algorithms, and neural net-

works.

Ricardo Santiago-Mozos (S’01) was born in San Xenxo, Spain, in 1975. He re-
ceived the B.S. degree in telecommunications engineering from the Universidad
de Vigo, Spain, in 2001 and is currently pursuing the Ph.D degree in telecommu-
nications engineering in the Department of Signal Theory and Communications,
Universidad Carlos III de Madrid, Spain.

He is a Research Fellow with the Universidad Carlos III de Madrid. His
research interests include optimization in biomedical problems, genetic algo-
rithms, image processing, and signal processing.

Carlos Bousoiio-Calzén (M’95) recived the B.S and
Ph.D degrees in telecommunications engineering
from the Universidad Politécnica de Madrid, Spain,
in 1992 and 1996, respectively.

He is now an Associate Professor in the Depart-
ment of Signal Theory and Communications, Uni-
versidad Carlos III de Madrid, Spain. His research
interests are focused on optimization in communi-
cations, genetic algorithms, and neural networks. He
has coauthored more than 30 international journals
and conference papers in these areas.



