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Abstract—The broadcast scheduling problem (BSP) arises in
frame design for packet radio networks (PRNs). The frame struc-
ture determines the main communication parameters: communi-
cation delay and throughput. The BSP is a combinatorial opti-
mization problem which is known to be NP-hard. To solve it, we
propose an algorithm with two main steps which naturally arise
from the problem structure: the first one tackles the hardest con-
traints and the second one carries out the throughput optimization.
This algorithm combines a Hopfield neural network for the con-
straints satisfaction and a genetic algorithm for achieving a max-
imal throughput. The algorithm performance is compared with
that of existing algorithms in several benchmark cases; in all of
them, our algorithm finds the optimum frame length and outper-
forms previous algorithms in the resulting throughput.

Index Terms—Broadcast scheduling, genetic algorithms, Hop-
field neural networks, packet radio networks (PRN).

I. INTRODUCTION

I N packet radio networks (PRNs), a set of geographically dis-
persed stations shares a single radio channel to send packets

to each other by means of a time-division multiple-access
(TDMA) protocol. Several stations can simultaneously use the
channel if their distance is large enough to avoid interference;
otherwise the stations have to transmit their packets in different
time slots. If two stations wishing to communicate with each
other are far apart, it may be necessary to relay the packets over
multiple intermediate stations. Packet radio technology is a
good candidate for high-speed wireless data communications,
specially over wide area regions when wire connections are
not cost effective. PRNs have been deployed since the 60s in
military, commercial and academic environments, including
Internet [1].

The broadcast scheduling problem (BSP) is defined as the
scheduling of the transmisions of all the stations in a minimum
number of time slots such that no collision among packets oc-
curs [2]. The final arrangement of the station transmissions into
their assigned time slots is called a frame. The frame structure
is directly related to the main network performance measures.
First, theframe length(i.e., the number of time slots needed
for at least one transmission for every station) essentially de-
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termines the packet average delay. Secondly, for a fixed frame
length, the channel utilization is determined by the number of
simultaneous transmissions of noninterferring stations. We will
refer to this number asframe throughputor, simply, throughput.
Therefore, the BSP can be stated as to find the minimum length
and maximum throughput for a PRN.

The BSP is a combinatorial optimization problem known to
be NP-hard [2], [3]. Algorithmic solutions have been proposed
based on different approaches such as graph theory (GT) [1],
Hopfield neural networks (HNN) [4] or mean field annealing
(MFA) [3]; the latter has been shown to outperform the previous
ones. However, results reported in [3] do not achieve either min-
imum frame lengths or maximum throughput. Additionally, al-
though the MFA technique requires much less computational
effort than simulated annealing, the discrete-time simulation of
the MFA equations may be also a time consuming process. Fur-
thermore, MFA and HNN are quite efficient to take interference
constraints into account but may not maximize the number of
slots in a frame, as results in similar applications suggest.1

In order to jointly consider the interference constraints and
maximum throughput, some hybrid algorithms combining hnn
and genetic algorithms (GA) have proven better performance
[7], [8].

Our approach to solve the BSP is to divide this problem
in two subproblems. The first attempt is to find a minimum
frame length able to satisfy interference constraints and to
guarantee the transmission of every radio station once per
frame. The second tackles the maximization of the throughput
for a given frame length. The algorithm proposed has two
stages corresponding to these two subproblems. For the first
stage, a discrete HNN is used and for the second stage, we
apply a combination of a HNN and a GA. The performance of
the overall algorithm is tested for the problem instances given
by [3]. For all these cases, we obtain optimum frame lengths
and more throughput than the MFA algorithm. Furthermore, we
also give a tight frame length lower bound, which is attained
by the two stage algorithm in these instances.

The structure of this paper is as follows. Section II summa-
rizes the formulation for the BSP dividing it in the above men-
tioned subproblems. In this section, we also discuss the lower
bounds for the minimum frame length. The two-stage algorithm
is presented and discussed in Section III. The test broadcasting
problems and simulation results are presented and analyzed in
Section IV. The main conclusions of this work close the paper.

1Consider, for example, the results in the frequency assingment problem [5],
[6].
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II. BSP FORMULATION AND DISCUSSION

Since a PRN operates a single radio channel, the main con-
straint for the BSP comes from the interference between sta-
tions. The interference pattern among radio stations, which is
determined by the station physical location, radiation elements,
and the radio propagation characteristics, can be represented as
a graph: the nodes stand for the stations and there is an undi-
rected arc between two nodes if the corresponding stations in-
terfere with each other. Note that we are assuming a symmetric
situation in which if station interferes with station, then sta-
tion will also interfere with station. We use to
denote this graph, where is the set of nodes and the set of
arcs. In the case that , stations and are said to be
one hop apart. If and are not one hop apart but there exists
an intermediate station such that and ,
stations and are said to betwo hops apart.

For a PRN to work correctly, there are operational constraints.
Two stations and are not allowed to transmit at the same time
if either of them are one hop apart, since their signals would in-
terfer with each other, or if they are two hops apart, since their
signals will collide at an intermediate station. These interfer-
ence constraints can be represented by a binary matrix,

, where is the number of stations in the system. Theth row,
th column element of , , is one if and only if stationsand
are one or two hops apart and zero, otherwise. Matrixde-

fined this way is called thesystem compatibility matrix[3].
The frame specifies which stations are allowed to transmit in

a definite time slot; so that the definition of the frame structure is
the scheduling problem objective. The frame can be represented
by a binary matrix, , where is the number of time
slots in the frame (i.e., the frame length) andis the number
of stations in the system, as previously defined. Elementis
one if station is allowed to transmit in time slot; if not, is
zero. Note that two or more stations can simultaneously transmit
if they do not interfere with each other. Furthermore, the more
stations transmitting at the same time slot, the better channel
utilization for the radio system is. The throughput of the system

is calculated as and is related to thechannel utilization
by .
With the notation introduced in the previous paragraphs, the

BSP is formulated as to find frame :

1) with the shortest length, ;
2) that satisfies constraints

(1)

(2)

3) makes maximum.
Constraint (1) forces the frame to allocate at least one time

slot per radio station and constraint (2) stands for avoiding in-
terference.

In order to solve this combinatorial optimization problem,
it is a common practice to consider as a parameter, which
can be estimated by means of theoretical bounds from GT and

to maximize subject to constraints (1) and (2). If a feasible
solution is found for an greater than the lower bound, is
decreased by one and a new maximumis searched for, until
either the search is not succesful or the lowest possibleis
reached. In this process, the algorithm to maximizeand the
estimation of a lower bound for are the essential ingredients.

A. BSP Partitioning

The problem of maximizing , which we will refer to asP1,
can be formulated as

(3)

under

(4)

(5)

P1 is a hard problem for close to its lower bound. Essen-
tially, the difficulty arises due to constraint (4), which asks for
at least onetime slot for each radio station in the frame. To deal
with this constraint, an intermediate optimization problemP2 is
defined to find a feasible frame withone and only onetransmis-
sion per radio station. If a feasible solution forP2can be found,
it will be improved by adding noninterferring transmissions to
obtain an optimal solution toP1. The formulation forP2 is as
follows:

find (6)

such that

(7)

(8)

Note that objectives ofP1andP2 are quite different: forP1,
the maximization of the number of simultaneous transmissions
is proposed, but forP2the objective is to search a feasible frame,
which is forced to have the same number of transmitting stations
by constraint (7). These disparate objectives accomodate to dif-
ferent optimization strategies (GA and HNN, respectively), as
detailed in Section III.

B. Some Comments About Lower Bounds for

Given an interference pattern for a PRN, Wang
and Ansari [3] establish a lower bound for, that we will call
here WA-LB

(9)

where is the maximum degree2 in .

2The degree of a vertex is the number of incident arcs to this vertex.
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Fig. 1. Simple example of a graph for which WA-LB and GT-LB differ.

This bound is easy to calculate and gives a hint for initializing
of the search process for the BSP. However, the bound is not
tight, so that it might not halt the process at the right value of

, leading to unsuccessful and costly searches. A tighter bound
coming from GT [9] can be easily applied, which will be useful
in Section IV to show that our results for the selected problems
give an optimum . now, we introduce this bound, hereafter
GT-LB, by means of a simple example.

Consider graph of Fig. 1, with seven nodes and
edges in solid lines. This graph may be considered as the inter-
ference pattern of a PRN, where the nodesrepresent stations
and the arcs (solid lines) represent collisions between one-hop
apart stations. If we enlarge with the edges in dashed lines in
Fig. 1, we come up with a new graph, , with the
same nodes or stations and arcs representing collisions between
one hop and two hops apart stations. GT-LB is formulated over

as3

(10)

where is the maximal cardinality of a clique4 in . Ap-
plying (9) and (10), WA-LB for is four while GT-LB for is
five, since is a clique.

III. T WO-STAGE ALGORITHM

A. HNN for P2

The algorithm proposed forP2 is a discrete-time binary HNN
[10]. The structure of this HNN can be described as a graph
where the set of nodes are the neurons and the set of edges de-
fines the connections between them. To solveP2, this graph is
mapped to the frame structuredefined in Section II. Neuron

represents a possible assignment of a time slotto station :
if this station is allowed to transmit at time slot, , oth-
erwise, . The connection between neurons and
is represented by setting ; if there is no connection,

. In order to avoid interference, if stationsand
are one or two hops apart, is one for every. To constrain
one and only one transmission per frame, is one for every

3This is a well-known bound for the chromatic number in GT, see [9] for
details.

4A clique in a graphG = (V;E ) is a subsetH of V such that any two
vertices inH are adjacent.

. The rest of , incluiding terms of the form ,
are set to zero. Note that the symmetry assumed for the inter-
ference pattern in Section II makes the connections of the HNN
also symmetric: .

After a random initialization of the neuron values, this HNN
operates in serial mode, which means that only one neuron is
updated at a time, while the rest are left unchanged. Denoting
by the state of neuron at time , the update rule is
described by

(11)

for every and ; the operator is defined by

if a
otherwise

A cycle is defined as the set of sucessive neuron up-
dates in a given order. In a cycle, every neuron is updated once
following a random order, which is fixed during the execution
of the algorithm. After every cycle, the HNN is checked for con-
vergence, which is reached if none of the neurons have changed
their state in the cycle. The final state of the HNN dynamics,
where the algorithm has converged, is interpreted as the frame
solution forP2.

The solution provided for the neural algorithm described
above is guaranteed to satisfy interference constraint (2), but
it may not provide a time slot for every station; therefore, it is
necessary to run the neural network several times until we find
a feasible solution, or we decide to halt the procedure.

B. Combination of the GA and HNN for P1

A solution forP2, hereafter , provides one transmission
for every station which will be preserved by the hybrid algo-
rithm; a simple GA is used to obtain optimal throughputs and
the HNN will preserve feasibility in every step of the GA. In
this way, we force the two characteristics of a solution forP1:
to have maximum thoughput and to be feasible.

The HNN forP1 is essentially the neural algorithm described
in the previous subsection with two modifications: the neurons
which represent are fixed to one, hence, every station trans-
mits at least once per frame; and are switched to zero for
every , so that the constraint of one and only one trans-
mission per frame is eliminated.

A simple GA takes a population of solutions forP1, repre-
sented as binary strings and evolves it through sucessive gen-
erations by means of the application of three operations on the
population: selection, crossover, and mutation [11].

Selection is the process by which individuals in the popula-
tion are randomly sampled with probabilities proportional to
their fitness values, which, in this case, are defined as their
throughputs. The larger the frame throughput, the higher the
probability of been selected is. An elitist strategy, consisting
of copying the highest throughput frame always, is applied in
order to preserve the best solution encontered, thus, far in the
evolution.
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Fig. 2. Histograms of the number of time slots obtained with and without the GA inP1 (Problem #3).P stand for the percentage of feasible solutions, whereas
HNN-GA and HNN stands for the number of slots assigned with and without GA, respectively.

The selected set, of the same size of the initial population, is
subjected to the crossover operation. First, the frames are cou-
pled at random. Secondly, for each pair of strings, an integer po-
sition along the string is selected uniformly at random. Two new
strings are composed by swapping all bits between the selected
position and the end of the string. This operation is applied to
the couples with probability less than one.

By means of the mutation operation, every bit in every string
of the population may be changed from one to zero, orvice
versa, with a very small probability .

Finally, since crossover and mutation operations may cause
the new string to be an infeasible frame, this string is set as the
initial state of the HNN and the result of the neural algorithm
substitutes it in the new population.

The overall algorithm for the BSP may proceed as follows.
First, an initial value for the frame length can be guessed from
the lower bounds discussed in the previous section. For a given
frame length, the HNN forP2 is used to search a feasible frame.
If such a frame is found, a shorter frame length can be tried until
the lower bound for the frame length is reached or the computa-
tional resources are exhausted. Once such a feasible frame with
minimal length is found, the algorithm forP1 gives an optimal
throughput frame.

IV. EXPERIMENTAL RESULTS

In order to test the performance of our algorithm, three sched-
uling problems have been chosen for which results by alterna-
tive algorithmic approaches are available [3]. Among these ap-

Fig. 3. Broadcast schedule obtained by the HNN-GA algorithm in Problem #1.
ST and SL stand for the number of stations and the number of slots, respectively.

TABLE I
BROADCAST PROBLEMS #1, #2AND #3 CHARACTERISTICS. N , minD,

maxD, avgD, WA-LB, GT-LB STAND FOR NUMBER OFSTATIONS, MINIMUM

DEGREE, MAXIMUM DEGREE ANDAVERAGE DEGREE, WANG’S LOWER

BOUND AND OUR LOWER BOUND FORM , RESPECTIVELY

proaches, the mean field annealing (MFA) [3] provides the best
results; we will use it as a comparison reference for the new al-
gorithm. These BSPs are referred as Problems #1, #2, and #3,
and their main characteristics along with lower bounds WA-LB
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Fig. 4. Broadcast schedule obtained by the HNN-GA algorithm in Problem #2. ST and SL stand for the number of stations and the number of slots, respectively.

Fig. 5. Broadcast schedule obtained by the HNN-GA algorithm in Problem #3. ST and SL stand for the number of stations and the number of slots, respectively.

TABLE II
THROUGHPUTS BY THEMFA AND THE HNN-GA ALGORITHMS

and GT-LB (see Section II-B), are summarized in Table I. The
GT-LBs are derived from cliques {5, 6, 9, 10, 11, 13, 14, 15},
{4, 10, 12, 14, 17, 18, 19, 20, 21, 22}, and {11, 12, 18, 19, 20, 26,
27, 28} for Problems #1, #2, and #3, respectively. Note that only
for Problem #2 WA-LB and GT-LB are different. Since BSP is
NP-hard and the size of the problems grows from Problem #1
to Problem #3, their difficulty is also expected to grow accord-
ingly. However, the net structure5 for Problem #2 makes this
problem the most difficult of them. This fact also clarifies some
of the results reported below.

The HNN structures for the benchmark problems are obtained
from their interference pattern graphs in [3], applying the map-
ping as explained in Section II. For the simple GA, probability
of crossover and probability of mutation have been set
to typical values: 0.6 and 0.01, respectively [11]. The GAs pop-
ulation sizes are 10, 50, and 25 for Problems #1, #2, and #3, re-

5This structure is summarized in Table I by means of the minimum, the max-
imum, and the average degree in a graph, which is the most important parameter.

Fig. 6. Comparison of average time delays obtained by the MFA algorithm
and the HNN-GA algorithm (Problem #2).D stands for the average time delay
whereasT stands for the total arrival rate (packets/slot).

spectively. Although these population sizes are quite small when
compared with typical ones, the GA exhibit good performance
essentially due to its synergy with the HNN algorithm [7], [8].
The performance difference in adding a GA to the HNN forP1
can be observed in the histograms of Fig. 2, corresponding to
Problem #3.

The optimal frames obtained by our algorithm, HNN-GA
hereafter, are given in Figs. 3, 4, and 5 for Problems #1, #2, and
#3, respectively. Note that their frame lengths are optimum,
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Fig. 7. Comparison of average time delays obtained by the MFA algorithm
and the HNN-GA algorithm (Problem #3).D stands for the average time delay
whereasT stands for the total arrival rate (packets/slot).

Fig. 8. Comparison of average time delays obtained by the MFA algorithm, the
HNN-GA algorithm and the PK HNN-GA algorithm (Problem #3).D stands for
the average time delay whereasT stands for the total arrival rate (packets/slot).

as can be verified from GT-LBs in Table I. The MFA obtains
an optimum frame length only for the easiest problem and has
special difficulties with Problem #2, as can be concluded from
data in Table II, which shows the optimal throughputs obtained
by MFA and HNN-GA for the three BSPs and different frame
lengths. HNN-GA outperforms MFA in all cases and the
difference between their results grows as the problem difficulty
does.

The influence of these results in the PRN packet delay
is quite significant, as it can be observed in Figs. 6 and 7,
which show the comparison between average time delays
obtained from the MFA and the HNN-GA for Problems #2
and #3, respectively. The average time delay obtained by the
HNN-GA for Problem #1 equals the obtained by the MFA and
we do not show them. The delay has been calculated with the
Pollaczec–Khinchin formula [12], which assumes independent
Poisson transmissions by the radio stations.

If the ultimate objective is a minimum network delay, a
straightforward modification can be done without essentially
changing the computational load. This modification consists of
setting the delay (as given by the Pollaczec–Khinchin formula)
as the GA fitness function instead of the throughput, we will
call this approach PK HNN-GA. The differences in delay for
both fitness functions are illustrated in Fig. 8.

V. CONCLUSION

In this paper, we propose a new algorithm for the BSP. The
algorithm solves this optimization problem in two stages: the
first to find a feasible solution and the second to obtain max-
imal transmission packing. A HNN is used for the first stage
and a combination of the neural net and a GA for the second.
The algorithm is tested for some examples, in which it obtains
optimum frame lengths and better transmission packings than
MFA.
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