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Design of two-dimensional zero reference codes
with a genetic algorithm
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In mask-alignment systems a reference signal is needed to align the mask with the silicon wafers. The op-
tical reference signal is the autocorrelation of two two-dimensional (2D) codes with binary transmittance.
For a long time, one-dimensional codes have been used in grating-measurement systems to obtain a refer-
ence signal. The design of this type of code has needed a great computational effort, which limits the size of
the code to about 100 elements. Recently, we have applied genetic algorithms to design codes with arbitrary
length. We propose the application of these algorithms to design 2D codes to generate 2D optical signals
used in mask-alignment systems. © 2006 Optical Society of America

OCIS codes: 120.0120, 120.3940, 220.0220, 230.0230.
The absolute measurement of the position in grating-
measurement systems and the detection of a refer-
ence position in mask-alignment systems are very
similar problems. Both systems need a reference sig-
nal to detect a predefined position. They are espe-
cially important in precision engineering, nano-
science, and nanotechnology. In 1972 King and
Berry1 were the first to use the moiré technique for
mask alignment in optical lithography. The system
consisted of a collimated laser beam passing through
a pair of gratings. At some positions from the second
grating, a pattern of fringes is generated (moiré phe-
nomena). When a lateral displacement between grat-
ings takes place, a variation of light intensity (moiré
signal) is registered in a photodiode. The modulation
of moiré signals strongly depends on the gap between
the gratings. Several authors have used this tech-
nique in different configurations.

On the other hand, in grating-measurement sys-
tems a zero reference signal is necessary to obtain an
absolute measurement. Traditionally, zero reference
signals are generated by means of optical correlation
of two binary transmittances, named zero reference
codes (ZRCs). The ZRC consists of a group of specially
coded transparent and opaque slits. A collimated
beam propagates through both codes, and the total
amount of transmitted light is registered by means of
a photodiode. The transmitted light depends on the
relative displacement between the ZRCs, and the sig-
nal registered in the photodiode is the autocorrela-
tion of the ZRC. The characterization and design of
optimum codes to obtain suitable reference signals
was addressed by Yang and Yin2 and Li.3 They estab-
lished methods to semiautomatically generate
limited-length codes (up to 10–12 elements) but are
still lacking a systematic computing method from
which arbitrary-length ZRCs could be obtained. In
Ref. 4 we have presented a systematic method for the
design of ZRCs, which generates optimum reference
0146-9592/06/111648-3/$15.00 ©
signals for codes up to 100 elements by means of a di-
rect search algorithm.

Chen et al.5 proposed a two-dimensional (2D) ver-
sion of the ZRCs for precise mask alignment. The sys-
tem operation is similar to one used to generate the
zero reference signal in grating-measurement sys-
tems. The 2D ZRCs are made up of unevenly located,
opaque, and transparent pixels. When the movement
takes place on the xy plane, the signal is obtained as
the 2D correlation of the ZRCs. Therefore two-axis
alignment can be detected with a simple system. De-
spite the simplicity of the optical-alignment system,
2D ZRCs are considerably harder to design than the
1D version, as the number of elements in the code
(which determines the complexity of the design)
squares with the size of the code in 2D ZRCs. In Ref.
6 we presented a systematic method of design for a
2D ZRC based on the DIRECT search algorithm. The
algorithm obtains the optimal solutions for codes up
to 10�10 elements. The design of larger ZRCs shoots
up the computer memory requirements and makes
the problem unapproachable. Memory requirements
can be kept under control by limiting the number of
objective function evaluations, but this limitation
leads to suboptimal solutions. A complete description
of DIRECT can be seen in Ref. 7. In this Letter we
show a genetic algorithm (GA) with a restricted
search operator, which allows the generation of opti-
mal solutions for larger 2D ZRCs. The parallel pro-
cessing of binary variables makes of them a powerful
tool for handling problems with a great number of
variables.

The studied alignment system is shown in Fig. 1.
The 2D ZRCs are parallel to each other, and one of
them is set in an xy mobile stage. A collimated beam
passes through them in the perpendicular direction,
and the total transmitted flux is registered in a pho-
todiode. The output signal is the 2D autocorrelation

of the ZRC, and it is a function of the relative dis-
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placements along the x and y directions of the ZRC.
Mathematically, the structure of the 2D ZRC is

represented by the following matrix of binary data:

c = �cij� = �
c11 ¯ c1n

� � �

cn1 ¯ cnn
�, cij � �0,1�, �1	

where n2 is the total number of elements of the ZRC,
cij=1 if a transparent pixel is located at the ij posi-
tion, and cij=0 elsewhere. The number of transparent
pixels is n1. The sizes of the transparent and opaque
regions in the ZRC are integer multiples of the width
of a single pixel.

We will assume that the illuminating light is a par-
allel ray beam and that diffraction effects are negli-
gible. This approach is valid when the gap between
ZRCs is small with regard to the size of the pixels in
the code, and this size is greater than the wavelength
of the illuminating light.

Fig. 1. 2D alignment system based on 2D ZRCs.
problem, which must be evaluated in order to obtain
When the two ZRCs have relative displacements of
k and l units in the x and y directions, respectively,
the signal registered in the photodiode is propor-
tional to

Skl = 

i=1

n−k



j=1

n−l

cijci+k,j+l, �2	

where k , l=−n+1, . . . ,n−1, and the signal Skl is the
autocorrelation matrix of the ZRC matrix defined in
Eq. (1).

The units of the autocorrelation signal are the
number of transparent pixels that coincide in a rela-
tive position of the codes. S00 is the signal obtained
when the relative displacement between ZRCs is
zero, and it is equal to the number of transparent pix-
els, n1

S00 = 

i=1

n



j=1

n

cij
2 = 


i=1

n



j=1

n

cij = n1. �3	

The secondary maximum of the signal is �
= max

k2+l2�0

�Skl�, where k2+ l2�0 means that k�0 and l

�0 at the same time. A good zero reference signal
must be a single and well-distinct peak, and the sen-
sitivity and robustness of the system depend on the
difference between the first and the second maxi-
mum. In the absence of diffraction the size of the pix-
els of the ZRC defines the width of the central peak of
the reference signal, and this width is the resolution
of the alignment system. The diameter of the light
beam limits the number of pixels in the ZRC and, in
turn, the sensitivity of the photodetection optoelec-
tronics determines the minimum value for the cen-
tral maximum of the signal, that is, the number of
transparent pixels of the ZRC. In accord with these
working requirements, we have n and n1 predeter-
mined, and we have to minimize the second maxi-
mum of the signal, �. In Ref. 6 we presented a study
of the properties of the autocorrelation signal, and we
have calculated a theoretical lower bound for the sec-
ond maximum of the signal. The bound is
� � �1 =

− �2n2 + n − 1	 −��2n2 + n − 1	2 + 4�1 +
1

nn1�n1 − 1	

− 2�1 +
1

n
. �4	
This bound is conservative, although there are some
simple cases in which this bound is reached. GAs are
population-based algorithms8 in which a set of poten-
tial solutions to the problem are evolved. The GA we
implement starts with a randomly generated initial
population of binary strings (individuals) of length n.
Each individual represents a possible solution to the
an objective function value associated with it. The
population is evolved through the successive applica-
tion of the genetic operators, basically selection,
crossover, and mutation. Selection is the process by
which individuals are randomly sampled with prob-
abilities proportional to their fitness values. The se-
lected set is subjected to the crossover operation,

which consists of first, the binary strings that are
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coupled at random. Second, for each pair of strings,
an integer position along the string is uniformly se-
lected at random. Two new strings are then composed
by swapping all bits between the selected position
and the end of the string. This operation is applied to
the couples with probability Pc (we have used 0.6).
The last operator in the standard GA is the mutation
operator, which consists of changing every bit of the
binary strings from 1 to 0, or vice versa, with a very
small probability Pm (we have used 0.01). The GA
evolution stops when a given stop criterion is ful-
filled, usually the number of generations. Note that
the GA described above needs an extra operator in or-
der to fix the number of 1 s in the binary strings to nl.
This operator is known as a restricted search opera-
tor, and it has been used before in the literature.9

We will apply GA to the design of an optimum 2D
ZRC. For this application, the objective function is

min
c�binary

f�c	, f�c	 = max
k2+l2�0

�Skl�, Skl = 

i=1

n−k



j=1

n−l

cijci+k,j+l,

�5	

Fig. 2. Height of the second maximum of the autocorrela-
tion with respect to the number of transparent pixels. The
codes have 16�16 pixels, and the number of transparent
pixels varies from 1 to 255.
where f�c	=� is the second maximum of the autocor-
relation signal, c is a binary matrix, and the con-
straint is the maximum of the signal, which is equal
to the number of transparent pixels in the ZRC [Eq.
(3)].

In Fig. 2 we demonstrate the performance of the
method. We calculated the second maximum for a
code of 16�16 elements �n=16	 and a number of
transparent pixels �n1	 that varies from 1 to 255. The
calculations have been made with the GA previously
described, with the DIRECT algorithm6 and evaluating
the lower bound [Eq. (4)]. The DIRECT algorithm does
not handle this number of variables, and suboptimal
solutions can be obtained with a low number of func-
tion evaluations. (In this case the number of function
evaluations used is 1.2�105; normally we need 3
�105 to guarantee optimal solutions.) It can be seen
in Fig. 2 that the solutions of the GA are closest to
the theoretical lower bound and therefore they are
much better than DIRECT solutions. In Ref. 5 Chen et
al. show a 2D code of 16�16 elements with 64 trans-
parent pixels. The autocorrelation of this code has a
second maximum of 16 pixels. In Fig. 2 the value of
the second maximum reached with GA is 13 pixels.
Therefore we show that the code used in Ref. 5 is not
optimal. The dimension of the code previously ana-
lyzed is relatively small but adequate to compare the
GA with other techniques. In order to demonstrate
the potential of the GA with a large number of vari-
ables, we have computed the optimal code for a 2D
ZRC with 100�100 elements with 300 transparent
pixels. The height of the secondary maximum is 14,
so an extremely well-distinct autocorrelation peak is
obtained. The 2D autocorrelation signal for this ex-
ample is shown in Fig. 3.
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Fig. 3. Autocorrelation signal obtained with a ZRC of
100�100 elements and 300 transparent pixels �nl	. The
second maximum is 14.


